Time Limit: 1000MS

    Memory Limit: 10000K
Total Submissions: 2738   Accepted: 1777

Description

There are two rows of positive integer numbers. We can draw one line segment between any two equal numbers, with values r, if one of them is located in the first row and the other one is located in the second row. We call this line segment an r-matching segment. The following figure shows a 3-matching and a 2-matching segment.


We want to find the maximum number of matching segments possible to draw for the given input, such that:

1. Each a-matching segment should cross exactly one b-matching segment, where a != b .

2. No two matching segments can be drawn from a number. For example, the following matchings are not allowed.



Write a program to compute the maximum number of matching segments for the input data. Note that this number is always even.

Input

The
first line of the input is the number M, which is the number of test
cases (1 <= M <= 10). Each test case has three lines. The first
line contains N1 and N2, the number of integers on the first and the
second row respectively. The next line contains N1 integers which are
the numbers on the first row. The third line contains N2 integers which
are the numbers on the second row. All numbers are positive integers
less than 100.

Output

Output
should have one separate line for each test case. The maximum number of
matching segments for each test case should be written in one separate
line.

Sample Input

3
6 6
1 3 1 3 1 3
3 1 3 1 3 1
4 4
1 1 3 3
1 1 3 3
12 11
1 2 3 3 2 4 1 5 1 3 5 10
3 1 2 3 2 4 12 1 5 5 3

Sample Output

6
0
8

Source

两个交叉的匹配为一组,每找到一组可行的匹配,答案数+2 。

设:f[上方匹配位置][下方匹配位置]=最优解

假设现在扫到了上方数组的i点和下方数组的j点。首先可以想到如果没有新的匹配,f[i][j]=max(f[i][j-1],f[i-1][j])

接着考虑新的匹配,在上方数组中从i往前找,找到最近的pos1使a[pos1]=b[j],同理在下方找到b[pos2]=a[i],那么pos1-j,pos2-i两条连线必然交叉,得到动归方程:

f[i][j]=max(f[i][j],f[pos1-1][pos2-1]+2)

 /**/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int mxn=;
int n1,n2;
int a[mxn],b[mxn];
int f[mxn][mxn];
int main(){
int T;
scanf("%d",&T);
int i,j;
while(T--){
memset(f,,sizeof f);
scanf("%d%d",&n1,&n2);
for(i=;i<=n1;i++)scanf("%d",&a[i]);
for(i=;i<=n2;i++)scanf("%d",&b[i]);
for(i=;i<=n1;i++)
for(j=;j<=n2;j++){
f[i][j]=max(f[i][j-],f[i-][j]);
if(a[i]==b[j])continue;
int k=i-;
while(k && a[k]!=b[j])k--;int pos1=k;
k=j-;
while(k && b[k]!=a[i])k--;int pos2=k;
if(pos1&&pos2) f[i][j]=max(f[i][j],f[pos1-][pos2-]+);
}
printf("%d\n",f[n1][n2]);
}
return ;
}

POJ1692 Crossed Matchings的更多相关文章

  1. [ACM_动态规划] ZOJ 1425 Crossed Matchings(交叉最大匹配 动态规划)

    Description There are two rows of positive integer numbers. We can draw one line segment between any ...

  2. POJ 1692 Crossed Matchings(DP)

    Description There are two rows of positive integer numbers. We can draw one line segment between any ...

  3. 【POJ】1692 Crossed Matchings

    经典DP,想了很久,开始想复杂了. #include <iostream> using namespace std; #define MAXNUM 100 int mymax(int a, ...

  4. POJ 1692 Crossed Matchings dp[][] 比较有意思的dp

    http://poj.org/problem?id=1692 这题看完题后就觉得我肯定不会的了,但是题解却很好理解.- - ,做题阴影吗 所以我还是需要多思考. 题目是给定两个数组,要求找出最大匹配数 ...

  5. 别人整理的DP大全(转)

    动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

  6. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  7. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  8. [转] POJ DP问题

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  9. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

随机推荐

  1. 【思维题 经典模型】cf632F. Magic Matrix

    非常妙的经典模型转化啊…… You're given a matrix A of size n × n. Let's call the matrix with nonnegative elements ...

  2. Linux问题分析或解决_samba无法连接

    1. windows设置方面问题 问题:window能连接部分服务器的samba共享,一部分无法连接.报错如截图. 解决:前提---其他人连接都没有问题,发现有问题的连接服务器的电脑是win10,而w ...

  3. 10分钟了解 react 引入的 Hooks

    "大家好,我是谷阿莫,今天要将的是一个...",哈哈哈,看到这个题我就想到这个开头.最近react 官方在 2018 ReactConf 大会上宣布 React v16.7.0-a ...

  4. pandas知识点(汇总和计算描述统计)

    调用DataFrame的sum方法会返还一个含有列的Series: In [5]: df = DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0 ...

  5. Zookeeper协调服务系统·ELK日志管理系统简介

    Zookeeper协调服务系统: 说明:它分布式系统中的协调服务系统,是Hadoop下的一个子项目,可提供的服务有:名字服务.配置服务.分布式同步.组服务等. 3个角色:Leaders.Follow. ...

  6. Python学习笔记(七)加密加盐

    MD5加密和加盐 Python的MD5加密 Python的hashlib模块的MD5加密,是比较简单一种加密,md5函数必须传入编译后的结果,否则会报错: Traceback (most recent ...

  7. django_数据库操作—增、删、改、查

    增加 增加数据有两种方法 1> sava >>> from datetime import date >>> book = BookInfo( btitle= ...

  8. stark组件前戏(2)之单例模式

    单,一个. 例,实例.对象. 通过利用Python模块导入的特性:在Python中,如果已经导入过的文件再被重新导入时候,python不会重新解释一遍,而是选择从内容中直接将原来导入的值拿来用.   ...

  9. A1002 A+B for Polynomials (25)(25 分)

    1002 A+B for Polynomials (25)(25 分) This time, you are supposed to find A+B where A and B are two po ...

  10. Kubernetes配置Ceph RBD StorageClass

    1. 在Ceph上为Kubernetes创建一个存储池 # ceph osd pool create k8s 2. 创建k8s用户 # ceph auth get-or-create client.k ...