D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

Promblem description
 
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

Examples
Input
1 3
Output
0.500000000
Input
5 5
Output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

很有趣的概率DP,但是我一开始没有向概率的方向想,妄图找出规律,还是我太年轻了。

为什么要用DP呢,我想是这个题的前后状态是有关联的,后面的状态可以转移成前面的状态,这就是精髓所在吧。

 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 1000000000
#define maxn 1005
#define maxm 100005
#define eps 1e-10
#define for0(i,n) for(int i=1;i<=(n);++i)
#define for1(i,n) for(int i=1;i<=(n);++i)
#define for2(i,x,y) for(int i=(x);i<=(y);++i)
#define for3(i,x,y) for(int i=(x);i>=(y);--i)
#define mod 1000000007
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
double dp[maxn][maxn];//用来表示到王妃抓时有i白j黑王妃获胜的概率,剩下i个白,j个黑
int main()
{
int n,m;
n=read();m=read();
for(int i=;i<=n;++i) dp[i][]=;
for(int i=;i<=m;++i) dp[][i]=;
//情况分析:
//dp[i][j]有3种渠道 1、王妃抽中白球 2、王妃抽中黑球,龙也抽黑球,跳出白的3、跳出黑的成
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
{
dp[i][j]+=(double)(i)/(i+j);
if(j>=) dp[i][j]+=(double)(j)/(double)(i+j)*(double)(j-)/(double)(i+j-)*(double)(i)/(double)(i+j-)*dp[i-][j-];
if(j>=) dp[i][j]+=(double)(j)/(double)(i+j)*(double)(j-)/(double)(i+j-)*(double)(j-)/(double)(i+j-)*dp[i][j-];
}
printf("%.9lf\n",dp[n][m]);
}

CF 148D Bag of mice【概率DP】的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  6. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  7. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  8. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. django+xadmin在线教育平台(三)

    通过留言版功能回顾django基础知识 将对于django目录结构,使用Django快速搭建可以提交的表单页面,models.py , urls.py, views.py. 从数据库中取出数据展示到h ...

  2. MTCNN学习资源

    MTCNN pytorch版本的实现 TropComplique/mtcnn-pytorch https://github.com/TropComplique/mtcnn-pytorch MTCNN实 ...

  3. [译]The Python Tutorial#11. Brief Tour of the Standard Library — Part II

    [译]The Python Tutorial#Brief Tour of the Standard Library - Part II 第二部分介绍更多满足专业编程需求的高级模块,这些模块在小型脚本中 ...

  4. OWINS是什么(转载)

    OWIN的英文全称是Open Web Interface for .NET. 如果仅从名称上解析,可以得出这样的信息:OWIN是针对.NET平台的开放Web接口. 那Web接口是谁和谁之间的接口呢?是 ...

  5. java十分钟速懂知识点——NIO

    一.引子 nio是java的IO框架里边十分重要的一部分内容,其最核心的就是提供了非阻塞IO的处理方式,最典型的应用场景就是处理网络连接.很多同学提起nio都能说起一二,但是细究其背后的原理.思想往往 ...

  6. android/libs/libammsdk.jar" already exists! 解决方法

    Error: Uh oh!"/work/2016/fengkongbao/.meteor/local/cordova-build/platforms/android/libs/libamms ...

  7. [项目1] bloger - day1

    项目代码:https://github.com/venicid/Project1--Bloger 1.准备工作 1.创建project PS C:\Users\Administrator\Deskto ...

  8. mysql插入、修改、删除

    联合查询: union:合并.联合,将多次查询结果合并成一个结果 语法: 查询语句1: union[all] 查询语句2: union [all] ... 意义 1.将一条比较复杂的查询语句可拆分成多 ...

  9. NOS直传加速服务

    本文来自网易云社区 作者:孙建良 最近团队在对存储系统做一些性能测试,期间遇到了不少问题,测试过程中得出的结果也没有很好的数据支撑,所以尝试了非常多的方法来对性能问题进行定位. 小王童鞋是挺厉害的,使 ...

  10. CentOS 7使用dnf安装Memcached以及启动、停止、开机启动等设置

    1.安装Memcached dnf install memcached 根据提示完成安装 2.启动Memcached 输入以下命令: service memcached start 输出以下内容: R ...