D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

Promblem description
 
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

Examples
Input
1 3
Output
0.500000000
Input
5 5
Output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

很有趣的概率DP,但是我一开始没有向概率的方向想,妄图找出规律,还是我太年轻了。

为什么要用DP呢,我想是这个题的前后状态是有关联的,后面的状态可以转移成前面的状态,这就是精髓所在吧。

 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 1000000000
#define maxn 1005
#define maxm 100005
#define eps 1e-10
#define for0(i,n) for(int i=1;i<=(n);++i)
#define for1(i,n) for(int i=1;i<=(n);++i)
#define for2(i,x,y) for(int i=(x);i<=(y);++i)
#define for3(i,x,y) for(int i=(x);i>=(y);--i)
#define mod 1000000007
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
double dp[maxn][maxn];//用来表示到王妃抓时有i白j黑王妃获胜的概率,剩下i个白,j个黑
int main()
{
int n,m;
n=read();m=read();
for(int i=;i<=n;++i) dp[i][]=;
for(int i=;i<=m;++i) dp[][i]=;
//情况分析:
//dp[i][j]有3种渠道 1、王妃抽中白球 2、王妃抽中黑球,龙也抽黑球,跳出白的3、跳出黑的成
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
{
dp[i][j]+=(double)(i)/(i+j);
if(j>=) dp[i][j]+=(double)(j)/(double)(i+j)*(double)(j-)/(double)(i+j-)*(double)(i)/(double)(i+j-)*dp[i-][j-];
if(j>=) dp[i][j]+=(double)(j)/(double)(i+j)*(double)(j-)/(double)(i+j-)*(double)(j-)/(double)(i+j-)*dp[i][j-];
}
printf("%.9lf\n",dp[n][m]);
}

CF 148D Bag of mice【概率DP】的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  6. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  7. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  8. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. k8s的service简述

    k8s向集群外部暴露端口的3种方式: 1.service->nodePort :仅暴露一个宿主机端口,用于集群外部访问,因为此操作被写入各个节点的iptables或ipvs规则当中,可以用任意一 ...

  2. python字符串处理方法

    一.combine & duplicate 字符串结合和复制 字符和字符串可以用来相加来组合成一个字符串输出: 字符或字符串复制输出. 二.Extract &Slice 字符串提取和切 ...

  3. 三分钟明白 Activity工作流 -- java运用

    一. 什么是工作流 以请假为例,现在大多数公司的请假流程是这样的 员工打电话(或网聊)向上级提出请假申请——上级口头同意——上级将请假记录下来——月底将请假记录上交公司——公司将请假录入电脑 采用工作 ...

  4. stark组件前戏(1)之项目启动前加载指定文件

    django项目启动时,可以自定义执行某个py文件,这需要在任意app的apps.py中的Config类定义ready方法,并调用.   from django.apps import AppConf ...

  5. 使用HTTP协议访问网络

    在Android上发送http请求有2种方式,分别由两个类完成,HttpURLConnection和HttpClient. 一.使用HttpURLConnection方式 1.1 建立连接的基本步骤 ...

  6. Jane Austen【简·奥斯汀】

    Jane Austen Jane Austen, a famous English writer, was born at Steventon, Hampshire, on December 16, ...

  7. Sonya and Robots CodeForces - 1004C (思维题)

    Sonya and Robots time limit per test 1 second memory limit per test 256 megabytes input: standard in ...

  8. 刷表法动态规划:HOJ11391_Word Clouds Revisited

    题目大意,给若干方块,让把方块拍成若干行,使得最终高度最小.其中,每行有宽度限制,高度为每行中最高的箱子的高度. 于是,很直观的认为,这个题可能也许大概应该是个动态规划的题. 于是,设DP[K]为K及 ...

  9. python中迷茫的编码问题

    1.理清一些知识点: python默认的编码格式: ASCII(py2) unicode(py3) 查看默认编码:sys.defaultencoding 修改默认编码:#coding = utf-8 ...

  10. 处理IE6下PNG图片透明背景问题

    由于历史原因,IE较早的版本不支持PNG透明 可以支持GIF等的透明 由于png图片相对较小,所以很多网站还是青睐于PNG图片 最近就遇到这种情况,使用js和css滤镜来实现的与大家分享一下下: 首先 ...