题意:

在一副图中,搞N-1条边,使得每个点都相连,

有多种可能的情况,所以求一种使得其中n-1条边的最大是所有可能的最小,然后并保证连接的n-1条边的权值总和最大

思路:

一开始没有看清题意,随便写了一发“最大生成树”连案例都跑不出,原来还有个条件是有n-1条边中的最大值是所有可能的最小。

然后窝就纳闷了。。。怎么搞法搞到一条最大的最小,随便搞了个最小生成树,写着写着发现其实最小生成树里的最大边,其他生成树就是包含的。

那么找到这条边,跑一下最大生成树就好了;

最小生成树利用并查集比较好~

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL INF=0x3f3f3f3f;
const int N=1e5+10; struct asd{
int x,y;
LL w;
};
asd q[N*4];
bool cmp1(asd a,asd b)
{
return a.w<b.w;
}
bool cmp2(asd a,asd b)
{
return a.w>b.w;
}
int pre[N];
int m,n; int Find(int x)
{
int r=x;
while(r!=pre[r])
{
r=pre[r];
}
int i=x,j;
while(pre[i]!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
scanf("%d%d%lld",&q[i].x,&q[i].y,&q[i].w);
for(int i=1;i<=n;i++)
pre[i]=i;
sort(q,q+m,cmp1);
LL tmax=-INF;
int k;
for(int i=0;i<m;i++)
{
int aa=Find(q[i].x);
int bb=Find(q[i].y);
if(aa!=bb)
{
pre[aa]=bb;
tmax=max(q[i].w,tmax);
}
}
for(int i=0;i<m;i++)
{
if(q[i].w>tmax)
{
k=i;
break;
}
}
sort(q,q+k,cmp2);
LL ans=0;
for(int i=1;i<=n;i++)
pre[i]=i;
for(int i=0;i<k;i++)
{
int aa=Find(q[i].x);
int bb=Find(q[i].y);
if(aa!=bb)
{
pre[aa]=bb;
ans+=q[i].w;
}
}
printf("%lld\n",ans);
return 0;
}

51nod1640 【最小生成树】的更多相关文章

  1. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  2. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  3. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  4. 【BZOJ 1016】【JSOI 2008】最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). ...

  5. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  6. Delaunay剖分与平面欧几里得距离最小生成树

    这个东西代码我是对着Trinkle的写的,所以就不放代码了.. Delaunay剖分的定义: 一个三角剖分是Delaunay的当且仅当其中的每个三角形的外接圆内部(不包括边界)都没有点. 它的存在性是 ...

  7. 最小生成树(prim&kruskal)

    最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法:                  原始的加权连通图——————D被选作起点,选与之相连的权值 ...

  8. 最小生成树 prime poj1258

    题意:给你一个矩阵M[i][j]表示i到j的距离 求最小生成树 思路:裸最小生成树 prime就可以了 最小生成树专题 AC代码: #include "iostream" #inc ...

  9. 最小生成树 prime + 队列优化

    存图方式 最小生成树prime+队列优化 优化后时间复杂度是O(m*lgm) m为边数 优化后简直神速,应该说对于绝大多数的题目来说都够用了 具体有多快呢 请参照这篇博客:堆排序 Heapsort / ...

随机推荐

  1. Rest Api(转载)

    来源:http://www.cnblogs.com/springyangwc/archive/2012/01/18/2325784.html 概述 REST 从资源的角度来观察整个网络,分布在各处的资 ...

  2. LeetCode(82)题解: Remove Duplicates from Sorted List II

    https://leetcode.com/problems/remove-duplicates-from-sorted-list-ii/ 题目: Given a sorted linked list, ...

  3. RecyclerView的那点事儿

    RecyclerView 控件简单介绍 ListView的升级版 LinearLayoutManager GridLayoutManager StaggeredGridLayoutManager 定制 ...

  4. 【BZOJ3252】攻略 DFS序+线段树(模拟费用流)

    [BZOJ3252]攻略 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏. 今天他得到了一款新游戏<XX半岛> ...

  5. 【BZOJ1975】[Sdoi2010]魔法猪学院 A*

    [BZOJ1975][Sdoi2010]魔法猪学院 Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪 ...

  6. tomcat部署web应用的4种方法以及部署多个应用

    原文: tomcat部署web应用的4种方法 在Tomcat中有四种部署Web应用的方式,简要的概括分别是: (1)利用Tomcat自动部署 (2)利用控制台进行部署 (3)增加自定义的Web部署文件 ...

  7. Leetcode:remove_duplicates_from_sorted_list

    一.     题目 给定一个排好序的链表,删除全部反复的节点,使每个节点都仅仅出现一次 比如: Given 1->1->2, return 1->2. Given 1->1-& ...

  8. UVA1482 Playing With Stones —— SG博弈

    题目链接:https://vjudge.net/problem/UVA-1482 题意: 有n堆石子, 每堆石子有ai(ai<=1e18).两个人轮流取石子,要求每次只能从一堆石子中抽取不多于一 ...

  9. 详细阐述ping命令中请求超时与无法访问的区别

    1.Request timed out 这是大家经常碰到的提示信息,很多文章中说这是对方机器置了过滤ICMP数据包,从上面工作过程来看,这是不完全 正确的,至少有下几种情况. (1) 对方已关机,或者 ...

  10. the art of seo(chapter three)

    SEO Planning: Customizing Your Strategy ***Developing an SEO Plan Prior to Site Development***Determ ...