完全背包

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
 
描述

直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO

 
输入
第一行: N 表示有多少组测试数据(N<7)。 
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO)
样例输入
2
1 5
2 2
2 5
2 2
5 1
样例输出
NO
1
上传者
ACM_赵铭浩
解题:RT

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#define LL long long
using namespace std;
const int INF = INT_MAX>>;
int c[],w[],dp[];
int main(){
int kase,n,i,j,v,k;
scanf("%d",&kase);
while(kase--){
scanf("%d %d",&n,&v);
for(i = ; i <= n; i++)
scanf("%d %d",c+i,w+i);
for(i = ; i <= v; i++)
dp[i] = -INF;
dp[] = ;
for(i = ; i <= n; i++){
for(j = c[i]; j <= v; j++)
if(dp[j] < dp[j-c[i]]+w[i]) dp[j] = dp[j-c[i]]+w[i];
}
if(dp[v] > ){
printf("%d\n",dp[v]);
}else puts("NO");
}
return ;
}

NYOJ 311 完全背包的更多相关文章

  1. 题解报告:NYOJ #311完全背包(恰好装满)

    描述: 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题 ...

  2. nyoj 311 dp 完全背包

    完全背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w. ...

  3. nyist oj 311 全然背包 (动态规划经典题)

    全然背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 直接说题意,全然背包定义有N种物品和一个容量为V的背包.每种物品都有无限件可用.第i种物品的体积是c,价值是 ...

  4. NYOJ(325)+NYOJ(456),01背包

    题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=325 http://acm.nyist.net/JudgeOnline/problem. ...

  5. nyoj 311-完全背包 (动态规划, 完全背包)

    311-完全背包 内存限制:64MB 时间限制:4000ms Special Judge: No accepted:5 submit:7 题目描述: 直接说题意,完全背包定义有N种物品和一个容量为V的 ...

  6. hyxzc_背包九讲课件

    10 1 1 1 5 5 7 9 //体积 5 5 1 5 3 5 1//价值   01 完全 多重 分组 有依赖性 ... ------------------------------------- ...

  7. nyoj 1091 还是01背包(超大数dp)

    nyoj 1091 还是01背包 描述 有n个重量和价值分别为 wi 和 vi 的物品,从这些物品中挑选总重量不超过W的物品,求所有挑选方案中价值总和的最大值 1 <= n <=40 1 ...

  8. nyoj 203 三国志 dijkstra+01背包

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=203 思路:先求点0到每个点的最短距离,dijkstra算法,然后就是01背包了 我奇怪的 ...

  9. NYOJ-289 苹果 289 AC(01背包) 分类: NYOJ 2014-01-01 21:30 178人阅读 评论(0) 收藏

    #include<stdio.h> #include<string.h> #define max(x,y) x>y?x:y struct apple { int c; i ...

随机推荐

  1. cucumber 文件目录结构和执行顺序

    引用链接:http://www.cnblogs.com/timsheng/archive/2012/12/10/2812164.html Cucumber是Ruby世界的BDD框架,开发人员主要与两类 ...

  2. kafka系列二:多节点分布式集群搭建

    上一篇分享了单节点伪分布式集群搭建方法,本篇来分享一下多节点分布式集群搭建方法.多节点分布式集群结构如下图所示: 为了方便查阅,本篇将和上一篇一样从零开始一步一步进行集群搭建. 一.安装Jdk 具体安 ...

  3. 数据库查询,显示为树形结构(easyui+SSM)

    在实际项目上,有很多地方后台存了一个表,但是在显示查询的时候需要显示为树形结构. 本项目是easyui+SSM框架. 前台程序为: <!DOCTYPE html> <html> ...

  4. 如何在Kubernetes里创建一个Nginx应用

    使用命令行kubectl run --image=nginx nginx-app --port=80 创建一个名为nginx-app的应用 结果: deployment.apps/nginx-app ...

  5. 解决因为手机设置字体大小导致h5页面在webview中变形的BUG

    首先,我们做了一个H5页面,在各种手机浏览器中打开都没问题.我们采用了rem单位进行布局,通过JS来动态计算网页的视窗宽度,动态设置html的font-size,一切都比较完美. 这时候,你自信满满的 ...

  6. 获取url请求的参数值

    function getURLParameter(name) { return decodeURIComponent((new RegExp('[?|&]' + name + '=' + '( ...

  7. 如何用node命令和webpack命令传递参数

    1. 比如在项目中我们的publicPath需要根据服务器环境的变化而变化,这时我们会写一个配置文件,在webpack.config.js中读取,可以 如何才能 取到变量呢? 这里介绍一种方法: 如果 ...

  8. websocket 入门

    什么是websocket WebSocket是HTML5新增的协议,它的目的是在浏览器和服务器之间建立一个不受限的双向通信的通道,比如说,服务器可以在任意时刻发送消息给浏览器. 为什么会出现 webs ...

  9. 搭建SSI开发框架原理

    Spring2.5.Struts2.Ibatis开发框架搭建(一) ssi, ibatis 一.框架下载 1.1   Struts2框架 Struts2框架发展于WebWork,现在捐献给了Apach ...

  10. oracle中group by的高级用法

    简单的group by用法 select c1,sum(c2) from t1 where t1<>'test' group by c1 having sum(c2)>100; ro ...