cogs 2057. [ZLXOI2015]殉国
2057. [ZLXOI2015]殉国
★☆ 输入文件:BlackHawk.in 输出文件:BlackHawk.out 评测插件
时间限制:0.05 s 内存限制:256 MB
【题目描述】

正义的萌军瞄准了位于南极洲的心灵控制器,为此我们打算用空袭摧毁心灵控制器,然而心灵控制器是如此强大,甚至能缓慢控制飞行员。一群勇敢的士(feng)兵(zi)决定投弹后自杀来避免心灵控制。然而自杀非常痛苦,所以萌军指挥官决定到达目的地后让飞机没油而坠落(也避免逃兵)。军官提供两种油:石油和中国输送来的地沟油,刚开始飞机没有油,飞机可以加几桶石油和几桶地沟油(假设石油和地沟油都有无限桶),飞机落地时必须把油耗尽,已知一桶石油和一桶地沟油所能支撑的飞行距离分别为a,b,驾驶员们必须飞往一个目的地,总距离为c.
1.最少,最多需要加几桶油,若只有一种方案,最少和最多的是相同的.
2.总共有多少种不同的加油配方(死法)能到达目的地。
【输入格式】
只有一行,三个正整数a,b,c
【输出格式】
两行,第一行为最少加几次油和最多加几次油,
第二行为加油方法总数。
若不存在任何方法,第一行输出-1 -1
第二行输出0
【样例输入】
样例1:
2 3 10
样例2:
6 8 10
【样例输出】
样例1:
4 5
2
样例2:
-1 -1
0
【提示】
样例解释:
样例一:飞机加两次石油,两次地沟油,总次数为4,2*2+3*3=10
飞机加五次石油,不加地沟油,总次数为5,2*5+3*0=10
总共两种
样例二:飞机无法到达目的地
数据范围:
对于10%的数据,a<=103,b<=103,c<=103
对于20%的数据,a<=104,b<=104,c<=106
对于50%的数据,a<=109,b<=109,c<=109
对于100%数据,a<=3⋅1018,b<=3⋅1018,c<=3⋅1018
三个答案分值权重分别为20%,30%,50%
/*
题目大意:Ax+By=C,x>=0,y>=0,求x+y最大值,x+y最小值
x,y的解得个数
暴力算法1:枚举x,y更新O(N^2)20分
暴力算法2:枚举x,测试y是否符合情况,O(N) 40分-100分(原谅我数据太水)
很明显的扩展欧几里得
令gcd(A,B)=D;
Ax+By=C满足有解的必要条件是C mod D = 0
我们先解方程Ax+By=gcd(A,B),得到该方程一组解(p',q’)乘以C/D
即为原方程的一组解(p0,q0)
则任何(p,q)满足
p = p0 +B/D *t
q = q0–A/D *t(其中t为任意整数)都为原方程的解
我们解不等式p>=0&&q>=0得到关于t的一个区间[l,r]
(注意不等式的向下取整和向上取整)
则通解个数显然为r-l+1
最小最大解一定分别在l,r处取得(因为是线性方程)
时间复杂度O(logN)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> #define LL long long using namespace std;
LL a,b,c,x,y; LL gcd(LL a,LL b)
{
if(b==)return a;
else return gcd(b,a%b);
}
LL exgcd(LL a,LL b,LL &x ,LL & y)
{
if(b==)
{x=;y=;return a;}
LL r=exgcd(b,a%b,x,y);
LL tmp=x;x=y;y=tmp-(a/b)*y;
return r;
}
int main()
{
freopen("BlackHawk.in","r",stdin);
freopen("BlackHawk.out","w",stdout);
cin>>a>>b>>c;
LL p=gcd(a,b);
if(c%p!=)
{
printf("-1 -1\n0");
return ;
}
exgcd(a,b,x,y);
LL xx=ceil((long double)-x/b*c);
LL yy=floor((long double)y/a*c);
LL ans=yy-xx+;
LL ans1=x*c/p+y*c/p+(b-a)/p*yy;
LL ans2=x*c/p+y*c/p+(b-a)/p*xx;
if(ans<=) printf("-1 -1\n0");
else cout<<min(ans1,ans2)<<" "<<max(ans1,ans2)<<endl<<ans;
return ;
}
cogs 2057. [ZLXOI2015]殉国的更多相关文章
- 扩展欧几里德算法 cogs.tk 2057. [ZLXOI2015]殉国
2057. [ZLXOI2015]殉国 ★☆ 输入文件:BlackHawk.in 输出文件:BlackHawk.out 评测插件时间限制:0.05 s 内存限制:256 MB [题目描 ...
- COGS——T 2057. [ZLXOI2015]殉国
http://cogs.pro/cogs/problem/problem.php?pid=2057 ★☆ 输入文件:BlackHawk.in 输出文件:BlackHawk.out 评测插件 ...
- 2057. [ZLXOI2015]殉国
★☆ 输入文件:BlackHawk.in 输出文件:BlackHawk.out 评测插件 时间限制:0.05 s 内存限制:256 MB [题目描述] 正义的萌军瞄准了位于南极洲的心灵 ...
- [ZLXOI2015]殉国
2057. [ZLXOI2015]殉国 http://cogs.pro/cogs/problem/problem.php?pid=2057 ★☆ 输入文件:BlackHawk.in 输出文件: ...
- [ZLXOI2015]殉国 数论 扩展欧几里得
题目大意:已知a,b,c,求满足ax+by=c (x>=0,y>=0)的(x+y)最大值与最小值与解的个数. 直接exgcd,求出x,y分别为最小正整数的解,然后一算就出来啦 #inclu ...
- COGS 2075. [ZLXOI2015][异次元圣战III]ZLX的陨落
★★☆ 输入文件:ThefallingofZLX.in 输出文件:ThefallingofZLX.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 正当革命如火如 ...
- 【COGS 254】【POI 2001】交通网络图
http://www.cogs.top/cogs/problem/problem.php?pid=254 dist[i]表示能最早到达i点的时间.这样就可以用最短路模型来转移了. #include&l ...
- hdu 2057 A+B
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2057 For each test case,print the sum of A and B in h ...
- 【COGS】894. 追查坏牛奶
http://cojs.tk/cogs/problem/problem.php?pid=894 题意:n个点m条边的加权网络,求最少边数的按编号字典序最小的最小割.(n<=32, m<=1 ...
随机推荐
- 第一个Vert.x程序
Jar依赖 <dependency> <groupId>io.vertx</groupId> <artifactId>vertx-core</ar ...
- Express的基本使用
前言 列表项目Express是一个简介而灵活的node.js Web应用框架提供的一系列强大特性帮助你创建各种 Web 应用,和丰富的HTTP工具. 正文 一个简单的express框架实例 ``` / ...
- SDUT OJ类型转换函数的应用
题目描述 处理一个复数与一个double数相加的运算,结果存放在一个double型变量d1中,输出d1的值.定义Complex(复数)类,在成员函数中包含重载类型转换运算符:operator doub ...
- Contiki 2.7 Makefile 文件(二)
二.Makefile.include 1.第一部分 (1) ifndef CONTIKI ${error CONTIKI not defined! You must specify where Con ...
- HTML5响应式模版Mocha
HTML5响应式模版Mocha,经典,html5,蓝色,扁平,HTML5响应式模版Mocha是一款宽屏大气的HTML5网站展示模板. http://www.huiyi8.com/moban/
- 转载h5问题总结
判断微信浏览器 function isWeixin(){ var ua = navigator.userAgent.toLowerCase(); if(ua.match(/MicroMessenger ...
- selenium中类名不能与方法名相同
不要将selenium中的类名命名成需要用到的方法名,不然会报错!
- dynamic 作为参数传入另一个程序集,获取值
dynamicOBJ.GetType().GetProperty("key").GetValue(dynamicOBJ, null)
- css实现下拉列表
像上面的要想实现 Hover 标题时 内容区下拉的效果,一般是要用js实现: 先获取内容区的高度,由于内容区刚开始可能是隐藏的,那么怎么才能获取其高度呢?方法是先给其元素设置绝对定位并把位置保持和之 ...
- HihoCoder1652 : 三角形面积和2([Offer收割]编程练习赛38)(几何)(不会几何,占位)
描述 如下图所示,在X轴上方一共有N个三角形.这些三角形的底边与X轴重合,底边上两个顶点的坐标分别是(Li, 0)和(Ri, 0),底边的对顶点坐标是(Xi, Yi).其中Li ≤ Xi ≤ Ri 且 ...