codeforces1009G Allowed Letters【贪心+hall定理】
因为是字典序所以贪心选当前能选的最小的,所以问题就在于怎么快速计算当前这个位置能不能选枚举的字母
重排之后的序列是可以和原序列完美匹配的,而完美匹配需要满足hall定理,也就是左边任意k个集合一定和右边至少k个点相连
又一共6个字符,原序列中相同字符点连出的点集是一样的,所以只要2^6个字符集合满足hall定理,每次这样枚举状压判断一下即可
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=100005;
int n,m,sm[N],f[N][70],ok[N];
char s[N],c[10],flg,ans[N];
int main()
{
scanf("%s%d",s+1,&m);
n=strlen(s+1);
for(int i=1;i<=n;i++)
for(int j=0;j<(1<<6);j++)
if(j&(1<<(s[i]-'a')))
sm[j]++;
for(int i=1;i<=n;i++)
ok[i]=(1<<6)-1;
for(int i=1,x;i<=m;i++)
{
scanf("%d%s",&x,c+1);
ok[x]=0;
for(int j=1;j<=strlen(c+1);j++)
ok[x]+=(1<<(c[j]-'a'));
}
for(int i=n;i>=1;i--)
for(int j=0;j<(1<<6);j++)
f[i][j]=f[i+1][j]+(((j&ok[i])==ok[i])?1:0);
for(int i=1;i<=n;i++)
{
bool fl=0;
for(int j=0;j<6&&!fl;j++)
if(sm[1<<j]&&(ok[i]&(1<<j)))
{
flg=1;
for(int k=0;k<(1<<6)&&flg;k++)
if(f[i+1][k]>sm[k]-((k>>j)&1))
flg=0;
if(flg)
{
fl=1;
ans[i]='a'+j;
for(int k=0;k<(1<<6);k++)
if(k&(1<<j))
sm[k]--;
}
}
if(!flg)
{
puts("Impossible");
return 0;
}
}
for(int i=1;i<=n;i++)
printf("%c",ans[i]);
return 0;
}
codeforces1009G Allowed Letters【贪心+hall定理】的更多相关文章
- [CF1009G]Allowed Letters[贪心+霍尔定理]
题意 给你一个长为 \(n\) 的串,字符集为 \(a,b,c,d,e,f\) .你可以将整个串打乱之后重新放置,但是某些位置上有一些限制:必须放某个字符集的字符.问字典序最小的串,如果无解输出 &q ...
- CF R638 div2 F Phoenix and Memory 贪心 线段树 构造 Hall定理
LINK:Phoenix and Memory 这场比赛标题好评 都是以凤凰这个单词开头的 有凤来仪吧. 其实和Hall定理关系不大. 不过这个定理有的时候会由于 先简述一下. 对于一张二分图 左边集 ...
- Codeforces 1009G Allowed Letters 最大流转最小割 sosdp
Allowed Letters 最直观的想法是贪心取, 然后网络流取check可不可行, 然后T了. 想到最大流可以等于最小割, 那么我们状压枚举字符代表的6个点连向汇点是否断掉, 然后再枚举64个本 ...
- TCO 2015 1A Hard.Revmatching(Hall定理)
\(Description\) 给定一个\(n\)个点的二分图,每条边有边权.求一个边权最小的边集,使得删除该边集后不存在完备匹配. \(n\leq20\). \(Solution\) 设点集为\(S ...
- BZOJ1135:[POI2009]Lyz(线段树,Hall定理)
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...
- Card Collector AtCoder - 5168(二分图匹配的HALL定理)
题意: 给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张). 现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值. 卡片数N<=1e5,H,W<=1e ...
- Hall定理 二分图完美匹配
充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\) ...
- 【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果 ...
- bzoj3693: 圆桌会议 二分图 hall定理
目录 题目链接 题解 代码 题目链接 bzoj3693: 圆桌会议 题解 对与每个人构建二分,问题化为时候有一个匹配取了所有的人 Hall定理--对于任意的二分图G,G的两个部分为X={x1,x2,- ...
随机推荐
- vi中如何替换某字符成“回车”?
vi中如何替换某字符成“回车”? 在 vi 中::s/,/^M/g (you need to type CTRL-V <CR> to get a ^M here)VIM - Vi IMpr ...
- ceph分布式存储系统初探
前言 由于公司的业务调整,现在我又要接触ceph这个东西,由于我接手的是一个网盘类项目,所以分布式存储系统ceph就是我必须要学的了.现在压力还是比较大的,从业务直接到后台核心. 大概在这几天,我将c ...
- 窥探 Swift 之别具一格的 Struct 和 Class
说到结构体和类,还是那句话,只要是接触过编程的小伙伴们对这两者并不陌生.但在Swift中的Struct和Class也有着令人眼前一亮的特性.Struct的功能变得更为强大,Class变的更为灵活.St ...
- Android中m、mm、mmm、mma、mmma的区别
m:编译整个安卓系统 makes from the top of the tree mm:编译当前目录下的模块,当前目录下需要有Android.mk这个makefile文件,否则就往上找最近的Andr ...
- Javascript类型转换的规则实例解析
http://www.jb51.net/article/79916.htm 类型转换可以分为隐式转换和显式转换,所谓隐式转换即程序在运行时进行的自动转换,显式转换则是人为的对类型进行强制转换.Java ...
- Matlab的publish功能和cell功能
Matlab的publish功能能够让写的代码变成优美的文档.类似为知笔记的markdown语言. cell功能配合publish使用,可以形成不同的功能块.而且调试的时候,可以按section调试. ...
- oracle数据库如何备份一张表
--用户名:tms--创建表ts_dictionary的备份create table ts_dictionary_20160715 as select * from ts_dictionary; 补充 ...
- freemaker开发
推荐书籍 百度云盘 密码: c3m9 1. 前言 本书为<FreeMarker 2.3.19 中文版手册>,包含了freemarker开发得方方面面,可以作为开发freemarker的字典 ...
- Mockito @BeforeClass @BeforeMethod @BeforeTest 的生命周期
@BeforeClass---@AfterClass 类实例化前, 被执行, 主要用于设置环境变量等, 与SpringTestContext结合用的时候要注意, 这种情况下@autowire的bean ...
- html5--1.16 内联框架
html5--1.16 内联框架 学习要点: 1.iframe内联框架2.综合实例1 1.iframe内联框架 1.iframe元素用来在文档中添加一个内联框架. 2.iframe为body元素的子元 ...