转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

MZL's Border

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 905    Accepted Submission(s): 295

Problem Description
As is known to all, MZL is an extraordinarily lovely girl. One day, MZL was playing with her favorite data structure, strings.

MZL is really like Fibonacci Sequence, so she defines Fibonacci Strings in the similar way. The definition of Fibonacci Strings is given below.
  
  1) fib1=b
  
  2) fib2=a
  
  3) fibi=fibi−1fibi−2, i>2
  
For instance, fib3=ab, fib4=aba, fib5=abaab.

Assume that a string s whose length is n is s1s2s3...sn. Then sisi+1si+2si+3...sj is called as a substring of s, which is written as s[i:j].

Assume that i<n. If s[1:i]=s[n−i+1:n], then s[1:i] is called as a Border of s. In Borders of s, the longest Border is called as s' LBorder. Moreover, s[1:i]'s LBorder is called as LBorderi.

Now you are given 2 numbers n and m. MZL wonders what LBorderm of fibn is. For the number can be very big, you should just output the number modulo 258280327(=2×317+1).

Note that 1≤T≤100, 1≤n≤103, 1≤m≤|fibn|.

 



Input
The first line of the input is a number T, which means the number of test cases.

Then for the following T lines, each has two positive integers n and m, whose meanings are described in the description.

 



Output
The output consists of T lines. Each has one number, meaning fibn's LBorderm modulo 258280327(=2×317+1).
 



Sample Input
2
4 3
5 5
 



Sample Output
1
2
 import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream; /**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author xyiyy@www.cnblogs.com/fraud
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task1009 solver = new Task1009();
solver.solve(1, in, out);
out.close();
} static class Task1009 {
Scanner in;
PrintWriter out; public void solve(int testNumber, Scanner in, PrintWriter out) {
this.in = in;
this.out = out;
run();
} void run() {
BigInteger dp[] = new BigInteger[2010];
BigInteger a[] = new BigInteger[2010];
dp[0] = BigInteger.ONE;
dp[1] = BigInteger.ONE;
dp[2] = BigInteger.ONE;
dp[3] = BigInteger.valueOf(3);
dp[4] = BigInteger.valueOf(5);
a[0] = BigInteger.ZERO;
a[1] = BigInteger.ZERO;
a[2] = BigInteger.ONE;
a[3] = BigInteger.ONE;
a[4] = BigInteger.valueOf(2);
for (int i = 5; i < 2010; i++) {
dp[i] = dp[i - 1].add(dp[i - 2]);
a[i] = a[i - 2].add(dp[i - 2]);
}
for (int i = 1; i < 2010; i++) {
dp[i] = dp[i].add(dp[i - 1]);
}
BigInteger m;
int t, n;
t = in.nextInt();
while (t != 0) {
t--;
n = in.nextInt();
m = in.nextBigInteger();
if (m.compareTo(BigInteger.ONE) == 0) {
out.println(1);
continue;
}
int i = 0;
for (i = 0; i < 2010; i++) {
if (dp[i].compareTo(m) >= 0) break;
}
i--;
out.println(a[i + 1].add(m.subtract(dp[i].add(BigInteger.ONE))).mod(BigInteger.valueOf(258280327)));
}
} } static class Scanner {
BufferedReader br;
StringTokenizer st; public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
} private void eat(String s) {
st = new StringTokenizer(s);
} public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
} public boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
} public String next() {
hasNext();
return st.nextToken();
} public int nextInt() {
return Integer.parseInt(next());
} public BigInteger nextBigInteger() {
return new BigInteger(next());
} }
}

hdu5351 MZL's Border(规律题,java)的更多相关文章

  1. HDU 5351 MZL's Border (规律,大数)

    [HDU 5351 MZL's Border]题意 定义字符串$f_1=b,f_2=a,f_i=f_{i-1}f_{i-2}$. 对$f_n$的长度为$m$的前缀$s$, 求最大的$k$满足$s[1] ...

  2. HDU 5351——MZL's Border——————【高精度+找规律】

    MZL's Border Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  3. 多校-HDU 5351 MZL's Border 数学规律

    f[1] = 'b', f[2] = 'a', f[i] = f[i - 1] + f[i - 2] 斐波那契数列的字符串,给你n和m,前m位中,最长的前缀等于后缀的长度是多少.1≤n≤1000, 1 ...

  4. 2015 Multi-University Training Contest 5 1009 MZL's Border

    MZL's Border Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5351 Mean: 给出一个类似斐波那契数列的字符串序列 ...

  5. ACM_送气球(规律题)

    送气球 Time Limit: 2000/1000ms (Java/Others) Problem Description: 为了奖励近段时间辛苦刷题的ACMer,会长决定给正在机房刷题的他们送气球. ...

  6. hdoj--1005--Number Sequence(规律题)

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. LightOJ1010---Knights in Chessboard (规律题)

    Given an m x n chessboard where you want to place chess knights. You have to find the number of maxi ...

  8. LeetCode第[18]题(Java):4Sum 标签:Array

    题目难度:Medium 题目: Given an array S of n integers, are there elements a, b, c, and d in S such that a + ...

  9. LeetCode第[1]题(Java):Two Sum 标签:Array

    题目: Given an array of integers, return indices of the two numbers such that they add up to a specifi ...

随机推荐

  1. web标准(复习)--4 纵向导航菜单及二级弹出菜单

    今天我们开始学习纵向导航菜单及二级弹出菜单,包含以下内容和知识点: 纵向列表 标签的默认样式 css派生选择器 css选择器的分组 纵向二级列表 相对定位和绝对定位 一.纵向列表纵向列表或称为纵向导航 ...

  2. PrepareCommand

    /// <summary> /// 执行参数查询 /// </summary> /// <param name="cmd">数据库执行命令< ...

  3. C语言---volatile(我的工程笔记本)

    一般说来,volatile用在如下的几个地方: 1.中断服务程序中修改的供其它程序检测的变量需要加volatile: 2.多任务环境下各任务间共享的标志应该加volatile: 3.存储器映射的硬件寄 ...

  4. #if defined 的意思?

    在读s3c2440a的test程序,其中option.h文件中有段语句为: #define LCD_N35 //#define LCD_L80 //#define LCD_T35 //#define ...

  5. VMCloud云平台 系列博文

    VMCloud云平台 系列博文http://blog.51cto.com/zt/644http://blog.51cto.com/zt/650 http://ljbaby.blog.51cto.com ...

  6. js深入研究之函数内的函数

    第一种 function foo() { ; function bar() { a *= ; } bar(); return a; } 第二种 function foo() { ; function ...

  7. 完美:adobe premiere cs6破解版下载[序列号+汉化包+破解补丁+破解教程]

    原文地址:http://blog.sina.com.cn/s/blog_6306f2c60102f5ub.html 完美:adobe premiere cs6破解版下载,含序列号.汉化包.注册机.破解 ...

  8. hdu5080:几何+polya计数(鞍山区域赛K题)

    /* 鞍山区域赛的K题..当时比赛都没来得及看(反正看了也不会) 学了polya定理之后就赶紧跑来补这个题.. 由于几何比较烂写了又丑又长的代码,还debug了很久.. 比较感动的是竟然1Y了.. * ...

  9. usaco6.1-Cow XOR:trie树

    Cow XOR Adrian Vladu -- 2005 Farmer John is stuck with another problem while feeding his cows. All o ...

  10. c语言结构体数组定义的三种方式

    struct dangdang { ]; ]; ]; int num; int bugnum; ]; ]; double RMB; int dangdang;//成员名可以和类名同名 }ddd[];/ ...