H - 简单dp 例题扩展

Crawling in process... Crawling failed Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2
题目大意:给你一个字符串,让你往其中插入字符,使其变成回文字符串,问最少需要插入多少字符。
思路分析:所谓回文字符串,就是正读和倒读一样的,因此可以考虑构造两个字符串,另一个字符串是
原字符串的逆序串,然后求最长公共子序列长度,那么字符串长度减去最长公共字符串长度就是需要插入
的字符数,注意dp数组开short,否则会爆内存。
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
using namespace std;
const int maxn=5000+100;
short dp[maxn][maxn];
int main()
{
    int n;
    char s1[maxn],s2[maxn];
    scanf("%d",&n);
       cin>>s1;
       for(int i=n-1;i>=0;i--)
        s2[n-i-1]=s1[i];
       memset(dp,0,sizeof(dp));
       for(int i=0;i<n;i++)
       {
           for(int j=0;j<n;j++)
           {
               if(s1[i]==s2[j])
               {
                   if(i>=1&&j>=1)
                    dp[i][j]=dp[i-1][j-1]+1;
                   else dp[i][j]=1;
               }
               if(s1[i]!=s2[j])
               {
                   if(i==0&&j==0) dp[0][0]=0;
                   else if(i>=1&&j==0) dp[i][j]=dp[i-1][j];
                   else if(i==0&&j>=1) dp[i][j]=dp[i][j-1];
                   else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
               }
           }
       }
       cout<<(n-dp[n-1][n-1])<<endl;
    return 0;
}
优化:如果开数组dp[maxn][maxn],非常耗内存,如果不用short开就会MLE.但是我们注意到,
dp[i][j]只与上一层的dp[i-1][j-1]或dp[i-1][j]有关,因此可以采用就地滚动的方法节省
内存,只需要开一个dp[2][maxn]的数组,同时,字符串在储存的时候也有技巧,推荐从1-n储存,
这样dp边界处理起来就容易的多。
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
using namespace std;
const int maxn=5000+100;
const int inf=0xfffffff;
short dp[2][maxn];//滚动数组
int main()
{
    int n;
    char s1[maxn],s2[maxn];
    scanf("%d",&n);
       scanf("%s",s1+1);
       for(int i=n;i>=1;i--)
        s2[n-i+1]=s1[i];
       memset(dp,0,sizeof(dp));
       int ma=-inf;
       for(int i=1;i<=n;i++)
       {
           for(int j=1;j<=n;j++)
           {
               if(s1[i]==s2[j])
               {
                    dp[i%2][j]=dp[(i-1)%2][j-1]+1;
               }
               if(s1[i]!=s2[j])
               {
                    dp[i%2][j]=max(dp[(i-1)%2][j],dp[i%2][j-1]);
               }
               if(dp[i%2][j]>ma) ma=dp[i%2][j];
           }
       }
       cout<<(n-ma)<<endl;
    return 0;
}

poj1159 dp(滚动数组优化)的更多相关文章

  1. HDU_1024.MaxSumPlusPlus(基础DP + 滚动数组优化讲解)

    这道题打破了我常规的做题思路,因为这是我刚开始训练DP,感觉这道题目好晕眼呀,emm其实就是感觉自己是真的菜...... 为什么说打破了我的做题思路呢,因为我平时看题解都是在已经AC或者完全不懂的情况 ...

  2. [BZOJ1044][HAOI2008]木棍分割 二分 + 单调队列优化dp + 滚动数组优化dp

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  3. LG3004 「USACO2010DEC」Treasure Chest 区间DP+滚动数组优化

    问题描述 LG3004 题解 把拿走的过程反向,看做添加的过程,于是很显然的区间DP模型. 设\(opt_{i,j}\)代表区间\([i,j]\)中Bessie可以获得的最大值,显然有 \[opt_{ ...

  4. 51Nod 1084 矩阵取数问题 V2 双线程DP 滚动数组优化

    基准时间限制:2 秒 空间限制:131072 KB  一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上.第1遍时只能向下和向右走,第2遍时只能向 ...

  5. 2014年北京 happy matt friends(dp + 滚动数组优化)

    Happy Matt Friends Time Limit: 6000/6000 MS (Java/Others)    Memory Limit: 510000/510000 K (Java/Oth ...

  6. POJ 3666 Making the Grade (DP滚动数组)

    题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...

  7. Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)

    题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A ...

  8. dp,滚动数组优化

    51Nod1084矩阵取数问题 V2 题意: 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上.第1遍时只能向下和向右走,第2遍时只能向上和向左 ...

  9. hdu 3392(滚动数组优化dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3392 Pie Time Limit: 6000/3000 MS (Java/Others)    Me ...

随机推荐

  1. linux下面安装配置LAMP环境

    以centos下面为例.初学者.东西基本都是各个地方找来的.自己手写了一遍.应该印象会很深刻 首先切换到超级管理员模式 1.安装php 一路选择y就行了 安装一些php的扩展 yum -y insta ...

  2. MySQL Left Join,Right Join

    魂屁,东西发这里了关于Left Join,Right Join的 在讲MySQL的Join语法前还是先回顾一下联结的语法,呵呵,其实连我自己都忘得差不多了,那就大家一起温习吧(如果内容有错误或有疑问, ...

  3. PHP 正则表达式处理字符串的应用(一)

    现有一个字符串如下: '旅行专题,旅行好玩 美好旅行;旅行真棒,一起旅行[旅行远足' 里面的分隔符号不确定,需要置换为如下: '旅行专题,旅行好玩,美好旅行,旅行真棒,一起旅行,旅行远足' 可以使用P ...

  4. python学习第十八天 --错误&异常处理

    这一章节主要讲解python的错误和异常处理 什么是错误和异常?及其区别? 错误: 1.语法错误:代码不符合解释器或者编译器语法. 2.逻辑错误:不完整或者不合法输入或者计算出现问题.   异常:执行 ...

  5. SuperMap

    SuperMap iClient for JavaScript 新手入门 地理信息系统(英语:Geographic Information System,缩写:GIS)是一门综合性学科,结合地理学与地 ...

  6. JSP(一)

    一.JSP概要 一]JSP的概念 1>JSP是SUN公司开发的一个基于服务端的一种动态WEB开发技术.         2>JSP的代码结构/内容 = HTML内容+JSP特有元素内容   ...

  7. 不管肉鸡,还是代理,CC识别就封杀!

    这几天的心得,汇成代码. PYTHON版,我编的. #!/usr/bin/env python # -*- coding: utf-8 -*- import os,sys,time import co ...

  8. LeetCode_Maximal Rectangle

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  9. Android之ExpandableListView的属性(Group不展开)

    1. 设置ExpandableListView 默认是展开的:  先实例化exListView 然后 exListView.setAdapter(exlvAdapter); //遍历所有group,将 ...

  10. C#使用.net.mail配置163邮箱报错:不允许使用邮箱名称。 服务器响应为:authentication is required,smtp9,DcCowABHK4UYE11W2k6fAQ--.52196S2 1448940312

    client.UseDefaultCredentials = true; 要放在 client.Credentials = new NetworkCredential("用户名", ...