USACO Section 4.2 The Perfect Stall(二分图匹配)

二分图的最大匹配。我是用最大流求解。加个源点s和汇点t;s和每只cow、每个stall和t 连一条容量为1有向边,每只cow和stall(that the cow is willing to produce milk in )也连一条容量为1的边。然后就用ISAP。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector> #define rep(i,l,r) for(int i=l;i<r;i++)
#define clr(x,c) memset(x,c,sizeof(x)) using namespace std; const int inf=0x3f3f3f3f,maxn=+; struct edge {
int from,to,cap,flow;
}; struct ISAP {
int n,m,s,t;
vector<edge> edges;
vector<int> g[maxn];
int d[maxn];
int cur[maxn];
int p[maxn];
int num[maxn]; void init(int n) {
this->n=n;
rep(i,,n) g[i].clear();
edges.clear();
clr(d,);
clr(num,);
clr(cur,);
rep(i,,n) num[d[i]]++;
} void addEdge(int from,int to,int cap) {
edges.push_back((edge){from,to,cap,});
edges.push_back((edge){to,from,,,});
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
} int augment() {
int x=t,a=inf;
while(x!=s) {
edge e=edges[p[x]];
a=min(a,e.cap-e.flow);
x=edges[p[x]].from;
}
x=t;
while(x!=s) {
edges[p[x]].flow+=a;
edges[p[x]^].flow-=a;
x=edges[p[x]].from;
}
return a;
} int maxFlow(int s,int t) {
this->s=s; this->t=t;
int flow=;
int x=s;
while(d[s]<n) {
if(x==t) {
flow+=augment();
x=s;
}
int ok=;
rep(i,cur[x],g[x].size()) {
edge e=edges[g[x][i]];
if(e.cap>e.flow && d[x]==d[e.to]+) {
ok=;
p[e.to]=g[x][i];
cur[x]=i;
x=e.to;
break;
}
}
if(!ok) {
int m=n-;
rep(i,,g[x].size()) {
edge e=edges[g[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--num[d[x]]==) break;
num[d[x]=m+]++;
cur[x]=;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
} isap; int s() {
int n,m;
cin>>n>>m;
isap.init(n+m+);
rep(i,,n) {
int t;
scanf("%d",&t);
isap.addEdge(,i+,);
rep(j,,t) {
int h;
scanf("%d",&h);
h+=n;
isap.addEdge(i+,h,);
}
}
rep(i,,m) {
int x=i+n+;
isap.addEdge(x,m+n+,) ;
}
return isap.maxFlow(,n+m+);
} int main() {
freopen("stall4.in","r",stdin);
freopen("stall4.out","w",stdout); cout<<s()<<endl; return ;
}
The Perfect Stall
Hal Burch
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
PROGRAM NAME: stall4
INPUT FORMAT
| Line 1: | One line with two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. |
| Line 2..N+1: | N lines, each corresponding to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow. |
SAMPLE INPUT (file stall4.in)
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
OUTPUT FORMAT
A single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
SAMPLE OUTPUT (file stall4.out)
4
USACO Section 4.2 The Perfect Stall(二分图匹配)的更多相关文章
- USACO Section 4.2: The Perfect Stall
这题关键就在将题转换成最大流模板题.首先有一个原始点,N个cow个点, M个barn点和一个终点,原始点到cow点和barn点到终点的流都为1,而cow对应的barn就是cow点到对应barn点的流, ...
- POJ1274 The Perfect Stall[二分图最大匹配]
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)
P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...
- POJ1274 The Perfect Stall 二分图,匈牙利算法
N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...
- poj 1274 The Perfect Stall (二分匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17768 Accepted: 810 ...
- POJ-1274The Perfect Stall,二分匹配裸模板题
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23313 Accepted: 103 ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
- USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)
The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...
随机推荐
- C++ STL 一般总结
以下内容来源网上 经过整合而成(转载) 一.一般介绍 STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C++程序库.它被容纳于C++标准程序库( ...
- tabBar隐藏与显现 hidesBottomBarWhenPushed
这个问题说简单也简单 但是如果不知道 可会让很多人吃苦 隐藏UITabBarController的tabBar, 我用它的一个属性hidesBottomBarWhenPushed隐 藏了,可以pop ...
- vs2015 不支持javascript的智能提示高亮
有些人安装了vs2015后发现居然不支持javascrpt的高亮功能,连工具-选项-文本编辑器里面的javascript也没有了,楼主也碰到这么个情况了,估计是有与装了多个版本的原因,楼主电脑安装了V ...
- SSIS之数据转换用法
当SSIS报错为:“无法在unicode和非unicode字符串数据类型之间转换”,可以考虑用数据转换器实现,很简单,如下图: 第一步,找到数据转换器: 第二步,编辑数据转换器: 第三步:编辑目标映射 ...
- GCD 的初步认识
1.什么是 GCD? GCD为Grand Central Dispatch的缩写 (GCD)是Apple开发的一个多核编程的较新的解决方法.它主要用于优化应用程序以支持多核处理器以及其他对称多处理系统 ...
- Spark 算子
0.parallelize 1.map 2.mapValues 3.flatMap 4.mapPartitions 5.mapPartitionsWithIndex 6.filter 7.reduce ...
- byte与sbyte的转换
C#实现byte与sbyte的转换 byte[] mByte; sbyte[] mSByte = new sbyte[mByte.Length]; ; i < mByte.Length; i++ ...
- [问题解决] "Nautilus could not create the required folder "/home/kenneth/.config/nautilus"
错误: "Nautilus could not create the required folder "/home/kenneth/.config/nautilus" 发 ...
- 清风注解-Swift程序设计语言:Point1~5
目录索引 清风注解-Swift程序设计语言 Point 1. Swift 风格的"Hello, world" 代码事例: println("Hello, world&qu ...
- 起启航-华夏互联与杰华网络合体结盟打造本土IT利舰
北京时间2013年9月9日消息: 领先的软件研发企业上海逐一软件科技有限公司与专业互联网推广运营机构南昌杰华网络开发有限公司达成协议,双方将建立紧密合作关系与集团运营体制,并在未来的10个月内进行相应 ...