The number of steps

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描写叙述

Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s
leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has
it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the
KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?


输入

There
are no more than 70 test cases.

 
In each case , first Input a positive integer n(0
The
input is terminated with 0. This test case is not to be processed.

输出

Please
calculate the expected number of steps required to reach the KEY room, there are 2 digits after the decimal point.

演示样例输入

3
0.3 0.7
0.1 0.3 0.6
0

演示样例输出

3.41

提示

 

来源

2013年山东省第四届ACM大学生程序设计竞赛
概率dp的第一道题目,题目比較简单。
到着求解,最后一个点到最后的期望是0,其它的都由它连接的点的期望求出来。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd2luZGRyZWFtcw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast">

假设i到j的概率是pij,i到i的概率是pii,期望是E,那么求1到4的期望是
1.   E4 = 0 。
2.   E3 =E3 *P33
+ E4 * P34 + 1
;
3.  
E2 = E2 *P22+ E4
* P24 + 1  ;
4.  
E1 =E1 *P11 + E2
*P12 +E3 * P13 + 1
 ;
记忆化搜索,最后推出要求的值
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
double dp[100][100] ;
double a , b , c , d , e ;
int i , j , n ;
int ff(int x,int y)
{
if( x <= n && y >=(n+1)-x )
return 1 ;
return 0 ;
}
void f()
{ return ;
}
int main()
{
while(scanf("%d", &n) && n)
{
scanf("%lf %lf", &a, &b);
scanf("%lf %lf %lf", &c, &d, &e);
memset(dp,0,sizeof(dp));
for(i = n ; i >= 1 ; i--)
{
for(j = (n+1)-i ; j <= n ; j++)
{
if(i == n && j == (n+1)-i) continue ;
else if( i == n )
dp[i][j] = 1.0*( dp[i][j-1] ) + 1.0 ;
else
{
if( j == (n+1)-i )
dp[i][j] = a*dp[i+1][j-1] + b*dp[i+1][j] + 1.0 ;
else
dp[i][j] = c*dp[i+1][j-1] + d*dp[i+1][j] + e*dp[i][j-1] + 1.0 ;
}
}
}
printf("%.2lf\n", dp[1][n]);
}
return 0;
}

sdut2623--The number of steps(概率dp第一弹,求期望)的更多相关文章

  1. The number of steps(概率dp)

    Description Mary stands in a strange maze, the maze looks like a triangle(the first layer have one r ...

  2. sgu 495. Kids and Prizes (简单概率dp 正推求期望)

    题目链接 495. Kids and Prizes Time limit per test: 0.25 second(s)Memory limit: 262144 kilobytes input: s ...

  3. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  5. 【概率dp】【数学期望】Gym - 101190F - Foreign Postcards

    http://blog.csdn.net/DorMOUSENone/article/details/73699630

  6. [TS-A1489][2013中国国家集训队第二次作业]抽奖[概率dp]

    概率dp第一题,开始根本没搞懂,后来看了09年汤可因论文才基本搞懂,关键就是递推的时候做差比较一下,考虑新加入的情况对期望值的贡献,然后推推公式(好像还是不太会推qaq...) #include &l ...

  7. 13年山东省赛 The number of steps(概率dp水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud The number of steps Time Limit: 1 Sec  Me ...

  8. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  9. SDUT 2623 The number of steps (概率)

    The number of steps Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Mary stands in a stra ...

随机推荐

  1. [ES6] Function Params

    1. Default Value of function param: The function displayTopicsPreview() raises an error on the very ...

  2. [编译原理代码][NFA转DFA并最小化DFA并使用DFA进行词法分析]

    #include <iostream> #include <vector> #include <cstring> #include "stack" ...

  3. mvc自带的异步表单提交

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  4. (转)JSON 之FastJson解析

    一.阿里巴巴FastJson是一个Json处理工具包,包括“序列化”和“反序列化”两部分,它具备如下特征:速度最快,测试表明,fastjson具有极快的性能,超越任其他的Java Json parse ...

  5. MySQL常用命令大全(转)

    下面是我们经常会用到且非常有用的MySQL命令.下面你看到#表示在Unix命令行下执行命令,看到mysql>表示当前已经登录MySQL服务器,是在mysql客户端执行mysql命令. 登录MyS ...

  6. 自定义悬浮按钮:FloatingButton

    floating_button_layout.xml <?xml version="1.0" encoding="utf-8"?> <Rela ...

  7. 生产环境 tomcat中启动缓慢

    具体的原因没研究,大概是一个随机数种子生成的速度拖慢了,直接copy一份解决方案,属于备忘材料 解决 有两种解决办法: 1)在Tomcat环境中解决 可以通过配置JRE使用非阻塞的Entropy So ...

  8. 武汉科技大学ACM :1009: 零起点学算法63——弓型矩阵

    Problem Description 输出n*m的弓型矩阵 Input 多组测试数据 每组输入2个整数 n和m(不大于20) Output 输出n*m的弓型矩阵,要求左上角元素是1,(每个元素占2个 ...

  9. shell中对于命令的搜寻顺序

    当你在shell命令行输入一条命令时,shell的搜寻顺序是如何的呢?当你的脚本名字和shell中的函数名字重名,shell是如何决定运行哪一个的? 在shell中,shell对于命令的搜寻优先级为: ...

  10. Mysql 卡死的处理办理

    使用用show processlist 命令进去数据库查 或者用phpMyAdmin查也可以 .