维基百科资料:

卡塔兰数

卡塔兰数组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (18141894)命名。

卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);

前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

[编辑]性质

Cn的另一个表达形式为 所以,Cn是一个自然数;这一点在先前的通项公式中并不显而易见。这个表达形式也是André对前一公式证明的基础。(见下文的第二个证明。)

卡塔兰数满足以下递推关系

它也满足

这提供了一个更快速的方法来计算卡塔兰数。

卡塔兰数的渐近增长为

它的含义是左式除以右式的商趋向于1当n → ∞。(这可以用n!的斯特灵公式来证明。)

所有的奇卡塔兰数Cn都满足n = 2k − 1。所有其他的卡塔兰数都是偶数。

[编辑]应用

组合数学中有非常多.的组合结构可以用卡塔兰数来计数。在Richard P. Stanley的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用Cn=3和Cn=4举若干例:

  • Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的部分字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

  • 将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:

((())) ()(()) ()()() (())() (()())

  • Cn表示有n+1个叶子的二叉树的个数。

  • Cn表示所有不同构的含n个分枝结点的满二叉树的个数。(一个有根二叉树是满的当且仅当每个结点都有两个子树或没有子树。)

证明:

令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有个,下面考虑不满足要求的数目.

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而。证毕。

  • Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数: X代表“向右”,Y代表“向上”。下图为n = 4的情况:
  • Cn表示通过连结顶点而将n + 2边的凸多边形分成三角形的方法个数。下图中为n = 4的情况:

  • Cn表示对{1, ..., n}依序进出置换个数。一个置换w是依序进出栈的当S(w) = (1, ..., n), 其中S(w)递归定义如下:令w = unv,其中nw的最大元素,uv为更短的数列;再令S(w) =S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
  • Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为 n = 4的情况:

百度百科资料:
简介

  中文:卡特兰数
  Catalan数是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。
  原理:
  令h(0)=1,h(1)=1,catalan数满足递归式:
  h(n)= h(0)*h(n-1) + h(1)*h(n-2) +  + h(n-1)h(0) (其中n>=2)
  该递推关系的解为:
  h(n)=C(2n,n)/(n + 1) (n=1,2,3,)
       另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);
  
  前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 
应用

  我总结了一下,最典型的四类应用:(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)
1.括号化问题。

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2.出栈次序问题。

  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。
3.将多边行划分为三角形问题。

  将一个凸多边形区域分成三角形区域的方法数?
  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
4.给顶节点组成二叉树的问题。

  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!
  先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +  + h(n-1)h(0)=h(n))
  (能构成h(N)个)

卡特兰数 Catalan数 ( ACM 数论 组合 )的更多相关文章

  1. 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]

    都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...

  2. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  3. 卡特兰数-Catalan数

    卡特兰数的含义: 说到卡特兰数,就不得不提及卡特兰数序列.卡特兰数序列是一个整数序列.其通项公式是我们从中取出的就叫做第n个卡特兰数数,前几个卡特兰数数是:1, 1, 2, 5, 14, 42, 13 ...

  4. 矩阵连乘问题的算法复杂度的计算--卡塔兰数(Catalan数)的数学推导和近似公式

    author: cust-- ZKe --------------------- 这里以连乘积加括号问题为背景: 由于矩阵的乘积满足结合律,且矩阵乘积必须满足左边矩阵的列数的等于右边矩阵的行数,不同的 ...

  5. [Catalan数三连]网格&有趣的数列&树屋阶梯

    如何让孩子爱上打表 Catalan数 Catalan数是组合数学中一个常出现在各种计数问题中的数列. 以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名. 先丢个公式(设第n项为$ ...

  6. ACM数论-卡特兰数Catalan

    Catalan 原理: 令h(0)=1,h(1)=1,catalan 数满足递归式: (其中n>=2) 另类递推公式: 该递推关系的解为: (n=1,2,3,...) 卡特兰数的应用实质上都是递 ...

  7. catalan 数——卡特兰数(转)

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  8. 卡特兰数 Catalan 笔记

    一.公式 卡特兰数一般公式 令h(0)=1,h(1)=1,catalan数满足递推式.h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>= ...

  9. 浅谈卡特兰数(Catalan number)的原理和相关应用

    一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...

随机推荐

  1. 修改UITextField placeholder Color

    [YourtextField setValue:[UIColor colorWithRed:97.0/255.0 green:1.0/255.0 blue:17.0/255.0 alpha:1.0] ...

  2. ORA-25154/ORA-01748

    SQL> select oi.order_id,product_id,order_date from order_items oi join orders o using(order_id) w ...

  3. Linux 编译安装 apache 2.4

    在安装apache之前需要准备一些必要的依赖包 gcc安装: #yum install -y gcc gcc-c++安装: #yum install gcc-c++  apr安装: 下载包:apr-1 ...

  4. js数组去重,并统计最多项算法

    从事了一段时间的前端开发,今天写了一个数组去重,并统计最多项的方法,目前只支持数组的项都是数字. 由于本人能力有限,希望能得到网友的指正!如有问题或者更好的实现思路,也欢迎大家和我讨论!代码如下: f ...

  5. POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

    题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...

  6. [ofbiz]设置任务计划(job),提示service_item已经传递

    问题描述:设置任务计划(job),提示service_item已经传递 解决办法: 红色框内不要填写,就可以了."已经传递"是翻译的不准确,应该是"已过时",所 ...

  7. putty设置

    1- 输入要链接的主机地址 2- 设置connection-->SSH-->Tunnels 点击Add 3- 设置connection 修改为30 4- 点击open,出现ssh登陆,输入 ...

  8. mysql导入.sql文件

    1. source /home/susie ...../**.sql 2. \. /home/susie/.../**.sql 批量导入.sql文件 首先新建一个main.sql,然后在main.sq ...

  9. Python修改文件名

    Python批量修改文件名 # -*- coding: cp936 -*- import os from nt import chdir path="./files/" froms ...

  10. Hdu1001(1到100的和)

    常规算法: #include <stdio.h> int main() { // 常规算法 int a; while(scanf("%d",&a)!=EOF){ ...