Matrix Factorization, Algorithms, Applications, and Avaliable packages
Matrix Decompositions has
a long history and generally centers around a set of known factorizations such as LU, QR, SVD and eigendecompositions. More recent
factorizations have seen the light of the day with work started with the advent of NMF, k-means and related algorithm [1].
However, with the advent of new methods based on random projections and convex optimization that started in part in the compressive
sensing literature, we are seeing another surge of very diverse algorithms dedicated to many different kinds of matrix factorizations with new constraints based on rank and/or positivity and/or sparsity,… As a result of this large increase in interest,
I have decided to keep a list of them here following the success of the big
picture in compressive sensing.
The sources for this list include the following most excellent sites: Stephen
Becker’s page, Raghunandan H. Keshavan‘ s page, Nuclear
Norm and Matrix Recovery through SDP by Christoph Helmberg, Arvind
Ganesh’s Low-Rank Matrix Recovery and Completion via Convex
Optimization who provide more in-depth additional information. Additional codes were featured also on Nuit
Blanche. The following people provided additional inputs: Olivier Grisel, Matthieu
Puigt.
Most of the algorithms listed below generally rely on using the nuclear norm as a proxy to the rank functional. It
may not be optimal. Currently, CVX ( Michael
Grant and Stephen Boyd) consistently allows one to explore other
proxies for the rank functional such as thelog-det as
found by Maryam Fazell, Haitham
Hindi, Stephen Boyd. ** is used to show that the algorithm uses
another heuristic than the nuclear norm.
In terms of notations, A refers to a matrix, L refers to a low rank matrix, S a sparse one and N to a noisy one. This page lists the different codes that implement the following matrix factorizations: Matrix Completion, Robust
PCA , Noisy Robust PCA, Sparse PCA, NMF, Dictionary Learning, MMV, Randomized Algorithms and other factorizations. Some of these toolboxes can sometimes implement several of these decompositions and are listed accordingly. Before I list algorithm here, I generally
feature them on Nuit Blanche under the MF tag: http://nuit-blanche.blogspot.com/search/label/MF or. you
can also subscribe to the Nuit Blanche feed,
Matrix Completion, A = H.*L with H a known mask, L unknown solve
for L lowest rank possible
The idea of this approach is to complete the unknown coefficients of a matrix based on the fact that the matrix is low rank:
- OptSpace: Matrix
Completion from a Few Entries by Raghunandan H. Keshavan, Andrea
Montanari, and Sewoong Oh - LMaFit: Low-Rank Matrix Fitting
- ** Penalty
Decomposition Methods for Rank Minimization by Zhaosong Lu and Yong
Zhang.The attendant MATLAB code is here. - Jellyfish: Parallel
Stochastic Gradient Algorithms for Large-Scale Matrix Completion, B. Recht, C. Re, Apr 2011 - GROUSE:
Online Identification and Tracking of Subspaces from Highly Incomplete Information, L. Balzano, R. Nowak, B. Recht, 2010 - SVP: Guaranteed
Rank Minimization via Singular Value Projection, R. Meka, P. Jain, I.S.Dhillon, 2009 - SET:
SET: an algorithm for consistent matrix completion, W. Dai, O. Milenkovic, 2009 - NNLS: An
accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, K. Toh, S. Yun, 2009 - FPCA: Fixed point
and Bregman iterative methods for matrix rank minimization, S. Ma, D. Goldfard, L. Chen, 2009 - SVT: A singular value thresholding
algorithm for matrix completion, J-F Cai, E.J. Candes, Z. Shen, 2008
Noisy Robust PCA, A = L + S + N with L, S, N unknown, solve
for L low rank, S sparse, N noise
- GoDec :
Randomized Low-rank and Sparse Matrix Decomposition in Noisy Case - ReProCS: The Recursive
Projected Compressive Sensing code (example)
Robust PCA : A = L + S with L, S, N unknown, solve for L low
rank, S sparse
- Robust PCA :
Two Codes that go with the paper “Two
Proposals for Robust PCA Using Semidefinite Programming.” by MichaleI
Mccoy andJoel Tropp - SPAMS (SPArse
Modeling Software) - ADMM: Alternating
Direction Method of Multipliers ‘‘Fast Automatic
Background Extraction via Robust PCA’ by Ivan Papusha. The poster
is here. The matlab implementation is here. - PCP: Generalized
Principal Component Pursuit - Augmented Lagrange Multiplier (ALM) Method [exact ALM - MATLAB zip]
[inexact ALM - MATLABzip], Reference
- The Augmented Lagrange Multiplier Method
for Exact Recovery of Corrupted Low-Rank Matrices, Z. Lin, M. Chen, L. Wu, and Y. Ma (UIUC Technical Report UILU-ENG-09-2215, November 2009) - Accelerated Proximal Gradient , Reference - Fast
Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix, Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma (UIUC Technical Report UILU-ENG-09-2214, August 2009)[full SVD version - MATLAB zip]
[partial SVD version - MATLAB zip] - Dual Method [MATLAB zip],
Reference - Fast Convex Optimization
Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix, Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma (UIUC Technical Report UILU-ENG-09-2214, August 2009). - Singular Value Thresholding [MATLAB zip].
Reference - A Singular Value Thresholding Algorithm
for Matrix Completion, J. -F. Cai, E. J. Candès, and Z. Shen (2008). - Alternating Direction Method [MATLAB zip]
, Reference - Sparse and Low-Rank Matrix
Decomposition via Alternating Direction Methods, X. Yuan, and J. Yang (2009). - LMaFit: Low-Rank Matrix Fitting
- Bayesian robust
PCA - Compressive-Projection
PCA (CPPCA)
Sparse PCA: A = DX with unknown D and X, solve for sparse
D
Sparse PCA on wikipedia
- R. Jenatton, G. Obozinski, F. Bach. Structured Sparse Principal Component Analysis. International Conference on Artificial Intelligence and Statistics (AISTATS). [pdf]
[code] - SPAMs
- DSPCA: Sparse
PCA using SDP . Code ishere. - PathPCA: A fast greedy algorithm for Sparse PCA. The code is here.
Dictionary Learning: A = DX with unknown D and X, solve for sparse
X
Some implementation of dictionary learning implement the NMF
- Online
Learning for Matrix Factorization and Sparse Coding by Julien Mairal, Francis
Bach, Jean Ponce,Guillermo
Sapiro [The code is released as SPArse Modeling Softwareor SPAMS] - Dictionary
Learning Algorithms for Sparse Representation (Matlab implementation of FOCUSS/FOCUSS-CNDL
is here) - Multiscale
sparse image representation with learned dictionaries [Matlab implementation of the K-SVD
algorithm is here, a newer implementation by Ron Rubinstein is here ] - Efficient
sparse coding algorithms [ Matlab code
is here ] url=http%3A%2F%2Fwww2.imm.dtu.dk%2Fpubdb%2Fviews%2Fedoc_download.php%2F4659%2Fpdf%2Fimm4659.pdf" style="color:rgb(41,112,166); text-decoration:none; margin:0px; padding:0px; word-wrap:break-word; border:none">Shift
. Matlab implemention is here
Invariant Sparse Coding of Image and Music Data- Shift-invariant
dictionary learning for sparse representations: extending K-SVD. - Thresholded
Smoothed-L0 (SL0) Dictionary Learning for Sparse Representations by Hadi Zayyani, Massoud
Babaie-Zadeh and Remi Gribonval. - Non-negative
Sparse Modeling of Textures (NMF) [Matlab implementation of NMF
(Non-negative Matrix Factorization) and NTF (Non-negative Tensor), a faster implementation of NMF can be found here,
here is a more recent Non-Negative Tensor Factorizations package]
NMF: A = DX with unknown D and X, solve for elements of D,X
> 0
Non-negative
Matrix Factorization (NMF) on wikipedia
- HALS: Accelerated
Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization by Nicolas
Gillis, François Glineur. - SPAMS (SPArse
Modeling Software) by Julien Mairal, Francis
Bach, Jean Ponce,Guillermo
Sapiro - NMF: C.-J. Lin. Projected
gradient methods for non-negative matrix factorization.issn=08997667" style="color:rgb(41,112,166); text-decoration:none; margin:0px; padding:0px; word-wrap:break-word; border:none">Neural
, 19(2007), 2756-2779.
Computation - Non-Negative Matrix Factorization: This
page contains an optimized C implementation of the Non-Negative Matrix Factorization (NMF) algorithm, described in [Lee
& Seung 2001]. We implement the update rules that minimize a weighted SSD error metric. A detailed description of weighted NMF can be found in[Peers
et al. 2006]. - NTFLAB for
Signal Processing, Toolboxes for NMF (Non-negative Matrix Factorization) and NTF (Non-negative Tensor Factorization) for BSS (Blind Source Separation) - Non-negative
Sparse Modeling of Textures (NMF) [Matlab implementation of NMF
(Non-negative Matrix Factorization) and NTF (Non-negative Tensor), a faster implementation of NMF can be found here,
here is a more recent Non-Negative Tensor Factorizations package]
Multiple Measurement Vector (MMV) Y = A X with unknown X and rows
of X are sparse.
- T-MSBL/T-SBL by Zhilin
Zhang - Compressive
MUSIC with optimized partial support for joint sparse recovery by Jong
Min Kim, Ok Kyun Lee, Jong
Chul Ye [no code] - The
REMBO Algorithm Accelerated Recovery of Jointly Sparse Vectorsby Moshe Mishali and Yonina C. Eldar [ no code]
Blind Source Separation (BSS) Y = A X with unknown A and X and
statistical independence between columns of X or subspaces of columns of X
Include Independent Component Analysis (ICA), Independent Subspace Analysis (ISA), and Sparse Component Analysis (SCA). There are many available codes for ICA and some for SCA. Here is a non-exhaustive list of some
famous ones (which are not limited to linear instantaneous mixtures). TBC
ICA:
- ICALab:
url=http%3A%2F%2Fwww%2Ebsp%2Ebrain%2Eriken%2Ejp%2FICALAB%2F&urlhash=8N_s&_t=tracking_disc" style="color:rgb(41,112,166); text-decoration:none; margin:0px; padding:0px; word-wrap:break-word; border:none">http://www.bsp.brain.riken.jp/ICALAB/
- BLISS softwares:
url=http%3A%2F%2Fwww%2Elis%2Einpg%2Efr%2Fpages_perso%2Fbliss%2Fdeliverables%2Fd20%2Ehtml&urlhash=5cMy&_t=tracking_disc" style="color:rgb(41,112,166); text-decoration:none; margin:0px; padding:0px; word-wrap:break-word; border:none">http://www.lis.inpg.fr/pages_perso/bliss/deliverables/d20.html
- MISEP: http://www.lx.it.pt/~lbalmeida/ica/mitoolbox.html
- Parra and Spence’s frequency-domain convolutive ICA:http://people.kyb.tuebingen.mpg.de/harmeling/code/convbss-0.1.tar
- C-FICA: http://www.ast.obs-mip.fr/c-fica
SCA:
- DUET:
url=http%3A%2F%2Fsparse%2Eucd%2Eie%2Fpublications%2Frickard07duet%2Epdf&urlhash=fZ9d&_t=tracking_disc" style="color:rgb(41,112,166); text-decoration:none; margin:0px; padding:0px; word-wrap:break-word; border:none">http://sparse.ucd.ie/publications/rickard07duet.pdf
(the
matlab code is given at the end of this pdf document) - LI-TIFROM: http://www.ast.obs-mip.fr/li-tifrom
Randomized Algorithms
These algorithms uses generally random projections to shrink very large problems into smaller ones that can be amenable to traditional matrix factorization methods.
Resource
Randomized algorithms for matrices and data by Michael W. Mahoney
Randomized Algorithms for Low-Rank Matrix
Decomposition
- Randomized PCA
- Randomized Least Squares: Blendenpik( http://pdos.csail.mit.edu/~petar/papers/blendenpik-v1.pdf )
Other factorization
D(T(.)) = L + E with unknown L, E and unknown transformation T and solve
for transformation T, Low Rank L and Noise E
- RASL:
Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition - TILT:
Transform Invariant Low-rank Textures
Frameworks featuring advanced Matrix factorizations
For the time being, few have integrated the most recent factorizations.
- Scikit
Learn (Python) - Matlab
Toolbox for Dimensionality Reduction (Probabilistic PCA, Factor Analysis (FA)…) - Orange (Python)
- pcaMethods—a bioconductor package
providing PCA methods for incomplete data. R Language
GraphLab / Hadoop
- Danny Bickson keeps
a blog on GraphLab.
Books
Example of use
- CS:
Low Rank Compressive Spectral Imaging and a multishot CASSI - CS:
Heuristics for Rank Proxy and how it changes everything…. - Tennis
Players are Sparse !
Sources
Arvind Ganesh’s Low-Rank
Matrix Recovery and Completion via Convex Optimization
- Raghunandan H. Keshavan‘
s list - Stephen
Becker’s list - Nuclear
Norm and Matrix Recovery through SDP by Christoph Helmberg - Nuit Blanche
Relevant links
Reference:
A
Unified View of Matrix Factorization Models by Ajit P. Singh and Geoffrey J. Gordon
Matrix Factorization, Algorithms, Applications, and Avaliable packages的更多相关文章
- Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...
- 关于NMF(Non-negative Matrix Factorization )
著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...
- 机器学习技法:15 Matrix Factorization
Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of ...
- 《Non-Negative Matrix Factorization for Polyphonic Music Transcription》译文
NMF(非负矩阵分解),由于其分解出的矩阵是非负的,在一些实际问题中具有非常好的解释,因此用途很广.在此,我给大家介绍一下NMF在多声部音乐中的应用.要翻译的论文是利用NMF转录多声部音乐的开山之作, ...
- 机器学习技法笔记:15 Matrix Factorization
Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of ...
- Non-negative Matrix Factorization 非负矩阵分解
著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...
- 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering ...
- 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤
[论文标题]List-wise learning to rank with matrix factorization for collaborative filtering (RecSys '10 ...
- 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...
随机推荐
- windows下安装MySQLdb模块
从http://www.codegood.com/downloads 下载mysqldb相应的exe文件直接安装. 我用的是MySQL-python-1.2.3.win32-py2.7.exe
- Bootstrap 响应式瀑布流 (使用wookmark)
使用瀑布布局 官方 http://www.wookmark.com/jquery-plugin GitHub https://github.com/GBKS/Wookmark-jQuery (下载后 ...
- Lotus Sametime 服务器的安装和配置
IBM Lotus Sametime 是一款强大的实时协作软件,目前最新版本是 7.5.1.通过它,您不仅能够进行网络聊天,而且可以方便地召开网络会议.在网络社区中与其他人进行沟通.了解更多关于 Lo ...
- ie7下div覆盖在iframe上方,ie8就不行,怎么解决
<div style="position:relative;display:inline-block;width:178px;height:90px;z-index:9999;top: ...
- 哈夫曼树(Huffman)的JS实现
我本身并不懂哈夫曼树也不知道有什么用,GOOGLE了下,也只是一知半解,只是刚好看到有JAVA实现版,又看了下生成原理,感觉挺有意思,就写了一下 有些地方可以优化,效率不怎么样的,纯好玩,也不保证一定 ...
- Http报文格式学习及Get和Post主要区别总结
HTTP(HyperText Transport Protocol,超文本传送协议) http请求数据包的格式:头部(request line + header)+ 数据(data) 头部和数据包体 ...
- C#调用matlab出错r6034错误解决方法[转载]
在c#调用MATLAB时,在运行第一次会出现r6034错误. 解决方法如下: 1.在MCR安装目录下D:\Program Files\MATLAB\MATLAB Compiler Runtime\v7 ...
- ID卡
ID卡全称为身份识别卡(Identification Card),是一种不可写入的感应卡,含固定的编号,主要有台湾SYRIS的EM格式.美国HIDMOTOROLA等各类ID卡.ID卡与磁卡一样,都仅仅 ...
- Linux批量重命名文件
五种方法实现Linux批量重命名文件 Linux批量重命名文件是指对某些特定的文件统一进行重新命名,以改变原来一批文件的名称,这里介绍五种方法来实现. Linux批量重命名文件会涉及到改变一个字母.改 ...
- Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13801 Accepted: 55 ...