美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应用,因为源地址在某神奇物质之外,特转载过来,源地址

Matrix Decompositions has
a long history and generally centers around a set of known factorizations such as LU, QR, SVD and eigendecompositions. More recent
factorizations have seen the light of the day with work started with the advent of NMF, k-means and related algorithm
 [1].
However, with the advent of new methods based on random projections and convex optimization that started in part in the compressive
sensing literature
, we are seeing another surge of very diverse algorithms dedicated to many different kinds of matrix factorizations with new constraints based on rank and/or positivity and/or sparsity,… As a result of this large increase in interest,
I have decided to keep a list of them here following the success of the big
picture in compressive sensing
.

The sources for this list include the following most excellent sites: Stephen
Becker’s page
Raghunandan H. Keshavan‘ s pageNuclear
Norm and Matrix Recovery
 through SDP by Christoph HelmbergArvind
Ganesh
’s Low-Rank Matrix Recovery and Completion via Convex
Optimization
 who provide more in-depth additional information.  Additional codes were featured also on Nuit
Blanche
. The following people provided additional inputs: Olivier GriselMatthieu
Puigt
.

Most of the algorithms listed below generally rely on using the nuclear norm as a proxy to the rank functional. It
may not be optimal
. Currently, CVX ( Michael
Grant
 and Stephen  Boyd) consistently allows one to explore other
proxies for the rank functional such as thelog-det as
found by Maryam  FazellHaitham
Hindi
Stephen Boyd. ** is used to show that the algorithm uses
another heuristic than the nuclear norm.

In terms of notations, A refers to a matrix, L refers to a low rank matrix, S a sparse one and N to a noisy one. This page lists the different codes that implement the following matrix factorizations: Matrix Completion, Robust
PCA , Noisy Robust PCA, Sparse PCA, NMF, Dictionary Learning, MMV, Randomized Algorithms and other factorizations. Some of these toolboxes can sometimes implement several of these decompositions and are listed accordingly. Before I list algorithm here, I generally
feature them on Nuit Blanche under the MF tag: http://nuit-blanche.blogspot.com/search/label/MF or. you
can also subscribe to the Nuit Blanche feed,

Matrix Completion, A = H.*L with H a known mask, L unknown solve
for L lowest rank possible

The idea of this approach is to complete the unknown coefficients of a matrix based on the fact that the matrix is low rank:

Noisy Robust PCA,  A = L + S + N with L, S, N unknown, solve
for L low rank, S sparse, N noise

Robust PCA : A = L + S with L, S, N unknown, solve for L low
rank, S sparse

Sparse PCA: A = DX  with unknown D and X, solve for sparse
D

Sparse PCA on wikipedia

  • R. Jenatton, G. Obozinski, F. Bach. Structured Sparse Principal Component Analysis. International Conference on Artificial Intelligence and Statistics (AISTATS). [pdf]
    [code]
  • SPAMs
  • DSPCA: Sparse
    PCA using SDP
     . Code ishere.
  • PathPCA: A fast greedy algorithm for Sparse PCA. The code is here.

Dictionary Learning: A = DX  with unknown D and X, solve for sparse
X

Some implementation of dictionary learning implement the NMF

NMF: A = DX with unknown D and X, solve for elements of D,X
> 0

Non-negative
Matrix Factorization (NMF) on wikipedia

Multiple Measurement Vector (MMV) Y = A X with unknown X and rows
of X are sparse.

Blind Source Separation (BSS) Y = A X with unknown A and X and
statistical independence between columns of X or subspaces of columns of X

Include Independent Component Analysis (ICA), Independent Subspace Analysis (ISA), and Sparse Component Analysis (SCA). There are many available codes for ICA and some for SCA. Here is a non-exhaustive list of some
famous ones (which are not limited to linear instantaneous mixtures). TBC

ICA:

SCA:

Randomized Algorithms

These algorithms uses generally random projections to shrink very large problems into smaller ones that can be amenable to traditional matrix factorization methods.

Resource

Randomized algorithms for matrices and data by Michael W. Mahoney

Randomized Algorithms for Low-Rank Matrix
Decomposition

Other factorization

D(T(.)) = L + E with unknown L, E and unknown transformation T and solve
for transformation T, Low Rank L and Noise E

Frameworks featuring advanced Matrix factorizations

For the time being, few have integrated the most recent factorizations.

GraphLab / Hadoop

Books

Example of use

Sources

Arvind Ganesh’s Low-Rank
Matrix Recovery and Completion via Convex Optimization

Relevant links

Reference:

A
Unified View of Matrix Factorization Models by Ajit P. Singh and Geoffrey J. Gordon

本文引用地址:http://blog.sciencenet.cn/blog-242887-483128.html

Matrix Factorization, Algorithms, Applications, and Avaliable packages的更多相关文章

  1. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  2. 关于NMF(Non-negative Matrix Factorization )

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  3. 机器学习技法:15 Matrix Factorization

    Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of ...

  4. 《Non-Negative Matrix Factorization for Polyphonic Music Transcription》译文

    NMF(非负矩阵分解),由于其分解出的矩阵是非负的,在一些实际问题中具有非常好的解释,因此用途很广.在此,我给大家介绍一下NMF在多声部音乐中的应用.要翻译的论文是利用NMF转录多声部音乐的开山之作, ...

  5. 机器学习技法笔记:15 Matrix Factorization

    Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of ...

  6. Non-negative Matrix Factorization 非负矩阵分解

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  7. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  8. 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤

    [论文标题]List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10 ...

  9. 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术

    [论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...

随机推荐

  1. ubuntu下使用codeblocks

    集成开发环境搭建 1. 安装build-essential 方法: sudo apt-get install build-essential 作用:提供编译程序必须软件包的列表信息,编译程序有了这个软 ...

  2. POJ 3974 Palindrome(最长回文子串)

    题目链接:http://poj.org/problem?id=3974 题意:求一给定字符串最长回文子串的长度 思路:直接套模板manacher算法 code: #include <cstdio ...

  3. MSSQL随机数概率测试

    随机概率测试 创建一个表统计create table t_test(ip char(15)) --truncate table t_test; declare @i int ;set @i=0; -- ...

  4. 国内外主流BI厂商对比

    BI(Business Intelligence),即商业智能或者商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决 ...

  5. 提供基于Lesktop的IM二次开发,联系QQ:87172811

    提供基于Lesktop的IM二次开发,联系QQ:87172811

  6. NHibernate composite-id联合主键配置

    NHibernate的联合主键配置比较复杂,初次配置可能需要花些时间,但只要我们理解了,掌握一定的步骤还是很容易的. 1.设计数据结构 Users:用户表 名称 Users 说明 用户表 序号 字段名 ...

  7. HDU 1276 士兵队列训练问题

    模拟题,学了一下list it=li.erase(it):指向删除后的第一个元素 #include <cstdio> #include <list> using namespa ...

  8. android 之Fragment(官网资料翻译)

    原文地址: http://blog.csdn.net/lilu_leo/article/details/7671533 ***************************  正文分割线 ***** ...

  9. HDU 1796 容斥原理 How many integers can you find

    题目连接   http://acm.hdu.edu.cn/showproblem.php?pid=1796 处男容斥原理  纪念一下  TMD看了好久才明白DFS... 先贴代码后解释 #includ ...

  10. block 解析 - 局部变量

    局部变量 block内使用局部变量,一般都是截获变量(只读),截获离block初始化最近的一次的值. 引用官方文档: Stack (non-static) variables local to the ...