非线性数据结构

二叉搜索树(Binary Search Tree)

树的密度=结点数/高度

二叉树类

 #pragma once

 class stnode
{
public:
int nodeValue; // node data stnode *left, *right, *parent; // child pointers and pointer to the node's parent // constructor
stnode (const int item, stnode *lptr = NULL, stnode*rptr = NULL, stnode *pptr = NULL):
nodeValue(item), left(lptr), right(rptr), parent(pptr)
{}
}; class stree
{
public:
stree(); // constructor. initialize root to NULL and size to 0
~stree(); // destructor
bool insert(const int item);
void Output(); private:
stnode *root; // pointer to tree root
int treeSize; // number of elements in the tree
stnode *creatSTNode(const int item, stnode *lptr, stnode *rptr, stnode*pptr);
}; stnode * stree::creatSTNode (const int item, stnode *lptr, stnode *rptr, stnode *pptr)
{
stnode*newNode; // initialize the data and all pointers
newNode = new stnode (item, lptr, rptr, pptr); return newNode;
}

完全二叉树(complete tree):

  所有非叶子节点有两个子结点或一个左子结点。按从左到右顺序建树。

包含n个元素的完全二叉树  h=(int)(log2(n))

遍历:

1、层次遍历

  按层从左到右遍历。

 //层序遍历二叉树
void stree::LevelByLevel(stnode *root)
{
std::queue<stnode*> q;//建队
q.push(root);//根节点入队
stnode *cur;
while(!q.empty())
{
cur=q.front(); //获得队列的首元素
q.pop(); //首元素出队
temp.Format("%d ",cur->nodeValue); //输出结点的值
str+=temp; if(cur->left!=NULL) //若结点的左子树不空
{
q.push(cur->left);
}
if(cur->right!=NULL)//若结点的右子树不空
{
q.push(cur->right);
}
}
}

2、中序遍历(LDR)

  先访问左结点数据,直到左节点为空则访问中间(父结点)数据,再访问右子结点数据。

盗一张百度的图:

3、前序遍历(DLR)

  先访问父结点数据,再访问左子结点,最后右子结点。到达即访问,根结点在遍历的第一个。

上图的前序遍历结果为:ABDGJEHCFI

4、后序遍历(LRD)

  先访问左子结点数据,再访问右子结点,最后父结点。根结点在遍历的最后一个。

上图的前序遍历结果为:JGDHEBIFCA

树的递归

1、递归遍历叶子结点

void CountLeaf(tnode<T> *t,int &count)
{
if(t!=NULL)
{
if(t->left==NULL&&t->right==NULL)
count++;
CountLeaf(t->left,count);
CountLeaf(t->right,count);
}
}

2、树的高度

 int depth(tnode<T> *t)
{
int depthleft,depthright,depthval;
if(t==NULL)
depthval=-;
else
{
depthleft=depth(t->left);
depthright=depth(t->right);
depthval=+(depthleft>depthright? depthleft:depthright);
}
return depthval;
}

3、删除整树

 void deleteTree(tnode<T> *t)
{
if(t!=NULL)
{
deleteTree(t->left);
deleteTree(t->right);
delete t;
}
}

 

树形输出:

 #include <iomanip>        // for setw()
#include <strstream> // for format conversion
#include <string> // node data formatted as a string
#include <queue>
#include <utility> using namespace std; class tnodeShadow
{
public:
string nodeValueStr; // formatted node value
int level,column;
tnodeShadow *left, *right; tnodeShadow ()
{}
};
/*
tnodeShadow *buildShadowTree(AVLnode *t, int level, int& column);
void displayTree(int maxCharacters);
void deleteShadowTree(tnodeShadow *t);
*/
tnodeShadow *AVLtree::buildShadowTree(AVLnode *t, int level, int& column)
{
tnodeShadow *newNode = NULL;
char text[];
ostrstream ostr(text,); if (t != NULL)
{
newNode = new tnodeShadow; tnodeShadow *newLeft = buildShadowTree(t->left, level+, column);
newNode->left = newLeft; ostr << t->nodeValue << ends;
newNode->nodeValueStr = text;
newNode->level = level;
newNode->column = column; column++; tnodeShadow *newRight = buildShadowTree(t->right, level+, column);
newNode->right = newRight;
} return newNode;
} void AVLtree::displayTree(int maxCharacters)
{
string label;
int level = , column = ;
int colWidth = maxCharacters + ; int currLevel = , currCol = ; if (treeSize == )
return; tnodeShadow *shadowRoot = buildShadowTree(root, level, column); tnodeShadow *currNode; queue<tnodeShadow *> q; q.push(shadowRoot); while(!q.empty())
{
currNode = q.front();
q.pop(); if (currNode->level > currLevel)
{
currLevel = currNode->level;
currCol = ;
cout << endl;
} if(currNode->left != NULL)
q.push(currNode->left); if(currNode->right != NULL)
q.push(currNode->right); if (currNode->column > currCol)
{
cout << setw((currNode->column-currCol)*colWidth) << " ";
currCol = currNode->column;
}
cout << setw(colWidth) << currNode->nodeValueStr;
currCol++;
}
cout << endl; deleteShadowTree(shadowRoot);
} void AVLtree::deleteShadowTree(tnodeShadow *t)
{
if (t != NULL)
{
deleteShadowTree(t->left);
deleteShadowTree(t->right);
delete t;
}
}

数据结构——二叉树(Binary Trees)的更多相关文章

  1. [Swift]LeetCode823. 带因子的二叉树 | Binary Trees With Factors

    Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree us ...

  2. 数据结构-二叉树(Binary Tree)

    #include <stdio.h> #include <string.h> #include <stdlib.h> #define LIST_INIT_SIZE ...

  3. 算法与数据结构基础 - 二叉树(Binary Tree)

    二叉树基础 满足这样性质的树称为二叉树:空树或节点最多有两个子树,称为左子树.右子树, 左右子树节点同样最多有两个子树. 二叉树是递归定义的,因而常用递归/DFS的思想处理二叉树相关问题,例如Leet ...

  4. [LeetCode] Merge Two Binary Trees 合并二叉树

    Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...

  5. [Swift]LeetCode617. 合并二叉树 | Merge Two Binary Trees

    Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...

  6. [Swift]LeetCode894. 所有可能的满二叉树 | All Possible Full Binary Trees

    A full binary tree is a binary tree where each node has exactly 0 or 2 children. Return a list of al ...

  7. [Swift]LeetCode951. 翻转等价二叉树 | Flip Equivalent Binary Trees

    For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left a ...

  8. [LeetCode] Binary Trees With Factors 带因子的二叉树

    Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree us ...

  9. LeetCode 617. Merge Two Binary Trees合并二叉树 (C++)

    题目: Given two binary trees and imagine that when you put one of them to cover the other, some nodes ...

  10. 17. Merge Two Binary Trees 融合二叉树

    [抄题]: Given two binary trees and imagine that when you put one of them to cover the other, some node ...

随机推荐

  1. xcode 资源管理

    我个人觉得这么理解就够了 其他的以后再说

  2. c 跟字符串有关的函数

    1.字符串查找 strstr char * strstr(const char *s1, const char *s2); 在s1中查找s2,如果找到返回首个s2的首地址 char * strcase ...

  3. jsp 有哪些动作?作用分别是什么?

    答:JSP 共有以下 6 种基本动作jsp:include: 在页面被请求的时候引入一个文件.jsp:useBean: 寻找或者实例化一个 JavaBean.jsp:setProperty: 设置 J ...

  4. 写后台SQL的一些心得

    昨天犯了一个错,其实是前几天写的代码犯的错,今天发现的.这是原来的代码: <update id="updateInfoByFoodId"> update food se ...

  5. 【C++】基于socket的多线程聊天室(控制台版)

    以前学习socket网络编程和多线程编程的时候写的一个练手程序 聊天室基本功能: 1.用户管理:登录,注册,登出,修改用户名,修改密码 2.聊天室功能:群聊,私聊,获取在线用户列表,获取所有用户列表 ...

  6. mapreduce 关于小文件导致任务缓慢的问题

    小文件导致任务执行缓慢的原因: 1.很容易想到的是map task 任务启动太多,而每个文件的实际输入量很小,所以导致了任务缓慢 这个可以通过 CombineTextInputFormat,解决,主要 ...

  7. DB2 VC++ 中连接字符串

    根据你安装的驱动,有如下两种连接字符串形式.Provider=DB2OLEDB;Network Transport Library=TCPIP;Network Address=xxx.xxx.xxx. ...

  8. 读取IOS的相应路径

    //    IOS相应路径 NSString* bundlePath = [[NSBundle mainBundle] bundlePath]; NSLog(@"bundlePath = % ...

  9. C# 读书笔记之访问虚方法、重写方法和隐藏方法

    C#允许派生类中的方法与基类中方法具有相同的签名:基类中使用关键字virtual定义虚方法:然后派生类中使用关键字override来重写方法,或使用关键字new来覆盖方法(隐藏方法). 重写方法用相同 ...

  10. RFID电子标签的二次注塑封装

    生活当中,RFID电子标签具有明显的优势,随着RFID电子标签成本的降低.读写距离的提高.标签存储容量增大及处理时间缩短的发展趋势,R F I D电子标签的应用将会越来越广泛. RFID电子标签的应用 ...