Overview

最近遇到一个问题,做蜡烛图,怎么把x轴变为时间轴,candlestick_ohlc中的date数据需要时整数型,当选择其他类型数据时,会报错!

具体文章请参考:如何用Python计算 HA candles

上网找了一下,第一个方法思路是:

  • 先把时间转化为数字
  • 用数字绘图
  • 绘制完图后把xtick改为时间类型,

这里有个小问题,如果休市,会出现一段空白,不是很美观。

当我们使用DateFrame数据格式时,可以使用pandas.core.indexes.datetimes.DatetimeIndex类型的数据格式,一般是df.index,所以我们要解决的问题就是如何使用df.index绘图,我们在第二种方法中会使用df.index

第一种方法

# 导入库
import pandas as pd
from pandas import DataFrame
import yfinance
from mpl_finance import candlestick_ohlc
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker # ticker 标签
from matplotlib.ticker import Formatter
import matplotlib.dates as dates
import numpy as np
import datetime # Python3 中引入的日时间
import time
# 绘制画布,
plt.rcParams['figure.figsize'] = [12, 7]
plt.rc('font', size=12)
# 获取数据源
name = 'SPY'
ticker = yfinance.Ticker(name)
df = ticker.history(interval="1d", start="2020-12-15", end="2021-04-15")
## 数据结构重排
df['Date'] = range(df.shape[0])
df = df.loc[:, ['Date', 'Open', 'High', 'Low', 'Close']] # 重排 df 数据结构
### date to num
df['Date']=pd.to_datetime(df.index,format="%Y/%m/%d")
df['Date'] = df['Date'].apply(lambda x:dates.date2num(x))
### 定义num转化为str的类
class My_format(Formatter):
def __init__(self, dates, fmt = '%y/%m/%d' ):
self.dates = dates
self.fmt = fmt def __call__(self, x, pos=0):
'return the label for time x at position pos'
ind = int(np.round(x)) # ind是x的刻度数值,不是日期的下标 return dates.num2date(ind).strftime(self.fmt)
### 定义绘图函数
def plot_charts(df, formatter):
fig, ax = plt.subplots()
fig.subplots_adjust(bottom = 0.1)
candlestick_ohlc(ax, df.values, width=0.6,
colorup='green', colordown='red', alpha=0.8)
ax.xaxis.set_major_formatter(formatter) # 将num 改为 str时间格式
### 调整坐标轴标签位置
for label in ax.get_xticklabels():
label.set_rotation(60) # 旋转60度
label.set_horizontalalignment('right') # 正对标签下方
fig.tight_layout()
fig.show()
### 运行实例
formatter = My_format(df["Date"][:])
plot_charts(df, formatter)

另一种方法

import yfinance
from mpl_finance import candlestick_ohlc
import matplotlib.pyplot as plt
import pandas as pd
# 绘制画布,
plt.rcParams['figure.figsize'] = [12, 7]
plt.rc('font', size=12)
# 获取数据源
name = 'SPY'
ticker = yfinance.Ticker(name)
df = ticker.history(interval="1d", start="2020-12-15", end="2021-04-15")
## 数据结构重排
df['Date'] = range(df.shape[0])
df = df.loc[:, ['Date', 'Open', 'High', 'Low', 'Close']] # 重排 df 数据结构
## 绘图
fig, ax = plt.subplots()
fig.subplots_adjust(bottom = 0.1)
candlestick_ohlc(ax, df.values, width=0.6,
colorup='green', colordown='red', alpha=0.8)
## x轴标签设置
ax.set_xlabel('Time') # x轴标签
ax.set_ylabel('Index') # y轴标签
ax.set_xlim(0, len(df.index)) #x轴范围
ax.set_xticks(range(-1, len(df.index), 15)) # 间隔设置为15
ax.set_xticklabels([df.index.strftime('%Y-%m-%d')[index] for index in ax.get_xticks()]) # 转化为时间标签
### 调整坐标轴标签位置
for label in ax.get_xticklabels():
label.set_rotation(60) # 旋转60度
label.set_fontsize(10) #字体大小设置为10
label.set_horizontalalignment('right') # 正对标签下方

Python可视化--HA Candle作图的更多相关文章

  1. Python可视化学习(1):Matplotlib的配置

    Matplotlib是一个优秀的可视化库,它提供了丰富的接口,让Python的可视化落地显得非常容易上手.本系列是本人学习python可视化的学习笔记,主要用于监督自己的学习进度,同时也希望和相关的博 ...

  2. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

  3. 数据分析之---Python可视化工具

    1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...

  4. python可视化基础

    常用的python可视化工具包是matplotlib,seaborn是在matplotlib基础上做的进一步封装.入坑python可视化,对有些人来说如同望山跑死马,心气上早输了一节.其实学习一门新知 ...

  5. 高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...

  6. Python可视化库-Matplotlib使用总结

    在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...

  7. Python 可视化工具 Matplotlib

    英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...

  8. 这才是你想要的 Python 可视化神器

    Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法. 受 Seaborn 和 ggplot2 的启发,它专门 ...

  9. python可视化pyecharts

    python可视化pyecharts 简单介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化 ...

随机推荐

  1. 【axios】API 说明

    基于promise用于浏览器和node.js的http客户端 特点 支持浏览器和node.js 支持promise 能拦截请求和响应 能转换请求和响应数据 能取消请求 自动转换JSON数据 浏览器端支 ...

  2. hive表导出到mysql报错

    Exception in thread "main" java.lang.NoClassDefFoundError: org/json/JSONObject hadoop@hado ...

  3. ES6 class——getter setter音乐播放器

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. oracle基础知识及语法

    ORACLE支持五种类型的完整性约束 NOT NULL (非空)--防止NULL值进入指定的列,在单列基础上定义,默认情况下,ORACLE允许在任何列中有NULL值. CHECK (检查)--检查在约 ...

  5. vsftpd 参数说明

    2021-07-28 该文章为转载文章,非原创 参数作用# 是否允许匿名访问 [ 12行 ]anonymous_enable=[YES|NO]# 是否允许本地用户访问( /etc/passwd中的用户 ...

  6. Spring中使用@within与@target的一些区别

    目录 背景 模拟项目例子 看看使用@within和@target的区别 @within @target @target 看起来跟合理一点 通知方法中注解参数的值为什么是不一样的 想用@within,但 ...

  7. Asp.net MVC Vue Axios无刷新请求数据和响应数据

    Model层Region.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; ...

  8. Element UI:DatePicker的终止日期与起始日期关联

    Template // 起始日期 <el-date-picker v-model="queryParams.startTime" :picker-options=" ...

  9. Configuration对象和SessionFactory会话池

    一.加载核心配置文件方式 二.加载映射文件方式 三.SessionFactory相当于连接池 四.获取session会话 同一个线程中获取的session两种方法获取的是同一个session对象: 不 ...

  10. Python小技巧:这17个骚操作你都OK吗?

    导读:Python 是一门非常优美的语言,其简洁易用令人不得不感概人生苦短.本文中带我们回顾了 17 个非常有用的 Python 技巧,例如查找.分割和合并列表等.这 17 个技巧都非常简单,但它们都 ...