正题

题目链接:https://www.luogu.com.cn/problem/P4249


题目大意

\(n\)个点的竞赛图有的边已经确定了方向,要求给剩下的边确定一个方向使得图的三元环最多。

\(1\leq n\leq 100\)


解题思路

竞赛图如果三个点不能构成三元环有一个性质就是恰好有一个点的度数等于\(2\),可以考虑减去不能构成三元环的方案。

也就说对于一个点\(x\)如果我们选出它的两条出边那么这个就不能构成三元环而且只会在点\(x\)统计一次。

所以答案就是

\[\binom n 3-\sum_{i=1}^n\binom{deg_i}2
\]

现在我们要最小化后面那个东西,这个就比较简单了,因为对于一条没有确定的边要么给\(x\)加度数要么给\(y\)加度数,我们可以考虑费用流,如果一条边可以指向\(x\)那么就连向点\(x\)费用\(0\)流量\(1\)。

然后对于每个点连接汇点的时候流量都是一,然后费用分别为\(0,1,2,3,...n-1\)就好了。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1e5+10;
struct node{
int to,next,w,c;
}a[N*20];
int n,tot=1,s,t,cnt,ans;
int p[110][110],c[110][110],ls[N],f[N],mf[N],pre[N];
bool v[N];queue<int> q;
void addl(int x,int y,int w,int c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
q.push(s);f[s]=0;v[s]=1;mf[s]=1e9;
while(!q.empty()){
int x=q.front();q.pop();v[x]=0;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return f[t]<=2147483647/3;
}
void Updata(){
int x=t;
ans+=mf[t]*f[t];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
int main()
{
scanf("%d",&n);
s=1;t=2;cnt=n+2;
for(int i=3;i<=n+2;i++)
for(int j=0;j<n;j++)
addl(i,t,1,j);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
int x;p[i][j]=++cnt;
scanf("%d",&x);
c[i][j]=x;
if(i>=j)continue;
addl(s,cnt,1,0);
if(x==0||x==2)addl(cnt,j+2,1,0);
if(x==1||x==2)addl(cnt,i+2,1,0);
}
while(SPFA())
Updata();
printf("%d\n",n*(n-1)*(n-2)/6-ans);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(c[i][j]!=2||i>=j)continue;
int x=p[i][j];
if(a[ls[x]].w)c[i][j]=0,c[j][i]=1;
else c[i][j]=1,c[j][i]=0;
}
for(int i=1;i<=n;i++,putchar('\n'))
for(int j=1;j<=n;j++)
printf("%d ",c[i][j]);
return 0;
}

P4249-[WC2007]剪刀石头布【费用流】的更多相关文章

  1. BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)

    BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...

  2. [WC2007]剪刀石头布——费用流

    比较有思维含量的一道题 题意:给混合完全图定向(定向为竞赛图)使得有最多的三元环 三元环条件要求比较高,还不容易分开处理. 正难则反 考虑,什么情况下,三元组不是三元环 一定是一个点有2个入度,一个点 ...

  3. BZOJ 2597: [Wc2007]剪刀石头布(费用流)

    传送门 解题思路 考虑全集-不能构成三元环的个数.如果三个点不能构成三元环,一定有一个点的入度为\(2\),继续扩展,如果一个点的度数为\(3\),则会失去3个三元环.对于一个点来说,它所产生的不能构 ...

  4. bzoj 2597 [Wc2007]剪刀石头布——费用流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 三个人之间的关系,除了“剪刀石头布”,就是有一个人赢了2局:所以考虑算补集,则每个人对 ...

  5. Luogu4249 WC2007 石头剪刀布 费用流

    传送门 考虑竞赛图三元环计数,设第\(i\)个点的入度为\(d_i\),根据容斥,答案为\(C_n^3 - \sum C_{d_i}^2\) 所以我们需要最小化\(\sum C_{d_i}^2\) 考 ...

  6. P4249 [WC2007]剪刀石头布

    有一个竞赛图,要给一些边定向,求三元环最多的数量 反过来考虑最少的不是环的三个点(称为不好的环),一定有一个点有2条入边,一个点有2条出边,一个点1入边1出边 可以对每一个不好的环只记录入边为2的点, ...

  7. 洛谷$P4249\ [WC2007]$剪刀石头布 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 题目大意其实就说有一个$n$个节点的有向完全图,然后部分边的方向已经给定了,要求确定所有边的方向使三元环数目有$max$.这里三元环的定义是说三条边的方向一 ...

  8. [bzoj2597][Wc2007]剪刀石头布_费用流

    [Wc2007]剪刀石头布 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 题解: 发现直接求三元环不好求,我们考虑任选三个点不是 ...

  9. 【bzoj2597】[Wc2007]剪刀石头布 动态加边费用流

    题目描述 在一些一对一游戏的比赛(如下棋.乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之为剪刀石头布情况.有的时候,无聊的人们会津津乐道于统计有多少这 ...

  10. BZOJ2597 [Wc2007]剪刀石头布 【费用流】

    题目链接 BZOJ2597 题解 orz思维差 既然是一张竞赛图,我们选出任意三个点都可能成环 总方案数为 \[{n \choose 3}\] 如果三个点不成环,会发现它们的度数是确定的,入度分别为\ ...

随机推荐

  1. asp.net core 知识点总结

  2. python运算符,内置函数简单使用

    1.编写程序,输入任意大的自然数,输出各位数字之和. 2.编写程序,输入两个集合 setA 和 setB,分别输出它们的交集.并集和差集 setA-setB. 3.编写程序,输入一个自然数,输出它的二 ...

  3. Git使用:

    配置可参考: 配置name 及email:$ git config --global user.name "Your Name"$ git config --global user ...

  4. vue3.0入门(四):组件

    组件 组件基础 <my-counter></my-counter> const app = Vue.createApp({ // 根组件 data() { return {} ...

  5. springMVC学习总结(二) --springMVC表单处理、标签库、静态文件处理

    根据springMVC学习总结(一) --springMVC搭建 搭建项目 一.表单处理 1.创建两个java类 Student.java, StudentController.java. 2.在js ...

  6. 《Go语言圣经》阅读笔记:第二章程序结构

    第二章 程序结构 2.1 命名 在GO语言中,所有的变量名.函数.常量.类型.语句标号.包名都遵循一个原则: 名字必须以字母或者下划线开头,后面紧跟任意数量的字母数字下划线.区分大小写. 在GO语言中 ...

  7. 将JAVA API接口 改写成 Python

    AsinSeedApi 不写注释的程序员-加密 将JAVA API接口 改写成 Python JAVA import com.alibaba.fastjson.JSON; import com.ali ...

  8. 菜狗、《灵笼》、《时光代理人》,重新审视Z世代的电商逻辑

    来源:懂懂笔记 B站还有多少潜力可以挖掘? 虽然B站的最新财报依然还是亏损,但同时也让人看到更多的可能性. 从财报数据的亮点来看,一是营收增长,B站二季度营收为44.95亿元,同比增长72%.营收上B ...

  9. go语言游戏服务端开发(一)——架构

    五邑隐侠,本名关健昌,12年游戏生涯. 本教程以Go语言为例.   网络游戏程序分为客户端和服务端.客户端负责图形渲染.交互和一些简单校验处理,服务端负责业务逻辑处理.数据存储. 我们开发一个游戏de ...

  10. 远程桌面连接(mstsc)全攻略

    打算从今天开始,写一写我经常用的,有长时间使用经验的东西,与大家分享,就从mstsc开始吧! mstsc应该是在Windows中,除了calc.cmd.notepad.mspaint,我使用率最高的系 ...