P5137-polynomial【倍增】
正题
题目链接:https://www.luogu.com.cn/problem/P5137
题目大意
\(T\)组数据给出\(n,a,b,p\)求
\]
\(1\leq T\leq 10^5,1\leq n,a,b,p\leq 10^{18}\)
解题思路
这个数据很大,考虑倍增求。
设为答案\(f(n)\),那么有
\]
\]
倍增维护就好了
时间复杂度\(O(T\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#define ll long long
using namespace std;
ll n,a,b,p,T;
ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-f;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
ll fac(ll a,ll b){
ll c=(long double)a*b/p;
long double ans=a*b-c*p;
if(ans>=p)ans-=p;
else if(ans<0)ans+=p;
return ans;
}
signed main()
{
T=read();
while(T--){
n=read();a=read();b=read();p=read();
ll ans=1,k=0,B=1,A=1;
for(ll i=62;i>=0;i--){
ans=(fac(A,ans)+fac(B,ans))%p;
ans=(ans+p-fac(A,B))%p;
k*=2;B=fac(B,B);A=fac(A,A);
if((n>>i)&1){
k++;B=fac(B,b);A=fac(A,a);
ans=(fac(ans,a)+B)%p;
}
}
printf("%lld\n",ans);
}
return 0;
}
P5137-polynomial【倍增】的更多相关文章
- [洛谷P5137]polynomial
题目大意:求:$$\sum\limits_{i=0}^na^{n-i}b^i\pmod{p}$$$T(T\leqslant10^5)$组数据,$a,b,n,p\leqslant10^{18}$ 题解 ...
- P5137 polynomial(分治)
传送门 神仙--这题有毒-- 一直在那里考虑没有逆元怎么办然后考虑解exgcd巴拉巴拉 最后只好看题解了 而且这题龟速乘都不行--得用代码里那种叫人半懂不懂的方式取模-- //minamoto #in ...
- 后缀数组的倍增算法(Prefix Doubling)
后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...
- [板子]倍增LCA
倍增LCA板子,没有压行,可读性应该还可以.转载请随意. #include <cstdio> #include <cstring> #include <algorithm ...
- Polynomial Library in OpenCascade
Polynomial Library in OpenCascade eryar@163.com 摘要Abstract:分析幂基曲线即多项式曲线在OpenCascade中的计算方法,以及利用OpenSc ...
- 在线倍增法求LCA专题
1.cojs 186. [USACO Oct08] 牧场旅行 ★★ 输入文件:pwalk.in 输出文件:pwalk.out 简单对比时间限制:1 s 内存限制:128 MB n个被自 ...
- LCA 倍增||树链剖分
方法1:倍增 1498ms #include <iostream> #include <cstdio> #include <algorithm> #include ...
- Codevs 2370 小机房的树 LCA 树上倍增
题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子, ...
- Uva 11354 LCA 倍增祖先
题目链接:https://vjudge.net/contest/144221#problem/B 题意:找一条从 s 到 t 的路,使得瓶颈路最小. 点的数目是10^4,如果向之前的方案求 maxc ...
随机推荐
- Walkthrough: Create and use your own Dynamic Link Library (C++)
参考网站:https://docs.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-librar ...
- 流媒体 Ubuntu部署srs、windows部署nginx
一.获取项目//码云克隆git clone https://gitee.com/winlinvip/srs.oschina.git srs//githubgit clone https://githu ...
- C# 读取保存xml文件
直接读取xml文件中的内容 XmlDocument xmlDoc = new XmlDocument(); xmlDoc.LoadXml(result); XmlNode root = xmlDoc. ...
- rabbitMq可靠消息投递之交换机备份
//备份队列 @Bean("alternate_queue") public Queue alternate_queue() { return new Queue("al ...
- windows 10 + tensorflow-gpu 环境搭建
安装过程可基本按照ubuntu装法,参考https://www.cnblogs.com/xbit/p/9768238.html 其中: conda配置文件:C:\Users\Administrator ...
- 并发编程之:JUC并发控制工具
大家好,我是小黑,一个在互联网苟且偷生的农民工. 在上一期我们讲了Thread.join()方法和CountDownLatch,这两者都可以做到等待一个线程执行完毕之后当前线程继续执行,并且Count ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- harbor高可用集群搭建
高可用harbor集群搭建 一.安装部署 1.节点角色 角色 数量 名称 备注 harbor主节点 2 harbor-1 harbor-2 双主模式 haproxy 2 HA-1 HA-2 需要通过k ...
- CSS导航菜单(二级菜单)
index.html <div class="nav"> <ul> <li> <a href="#">Java& ...
- 远程线程注入DLL
远程线程注入 0x00 前言 远程线程注入是一种经典的DLL注入技术.其实就是指一个新进程中另一个进程中创建线程的技术. 0x01 介绍 1.远程线程注入原理 画了一个图大致理解了下远程线程注入dll ...