Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 328    Accepted Submission(s): 130

Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
Author
FZU
思路:中国剩余定理+容斥+扩展欧几里得;
比赛时打了将近2个小时,最后还因为快速幂中的一个模没写而超时 GG啊。
其实题解的思路和我的思路有些不同,题解是容斥的时候将7加入一起用中国剩余定理求解,这时求出来的通解直接是7 的倍数,因为%7=0,加入求同余方程组的解;
因为只要符合模这些数中的一条就可以了,如果直接求解会重复,所以用容斥原理。加入其中求得一个通解,记为t+kmod;
然后y<=t+kmod<=x;移项可以求出k的解的个数,然后根据容斥这里是奇减偶加。
然后我的思路是没有加入7求同余。
而是用求出那些个的数的同余方程组的解然后t+kmod=7r;再用扩展欧几里得,求k的通解,但在这之前我先求x<=t+kmod<=y;的k的范围。
扩欧求得的b+7p,代入前面的不等式解p的范围,求得p有多少个,然后容斥奇减偶加p;
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stdlib.h>
7 #include<iostream>
8 #include<vector>
9 #include<map>
10 #include<set>
11 #include<math.h>
12 using namespace std;
13 typedef long long LL;
14 typedef struct pp
15 {
16 LL x;
17 LL y;
18 } ss;
19 ss ans[20];
20 LL quick(LL n,LL m,LL mod);
21 LL mul(LL n, LL m,LL p);
22 pair<LL,LL>P(LL n,LL m);
23 LL gcd(LL n, LL m);
24 LL mm[20];
25 int main(void)
26 {
27 int i,j,k;
28 scanf("%d",&k);
29 int __ca=0;
30 LL n,x,y;
31 while(k--)
32 {
33 __ca++;
34 scanf("%lld %lld %lld",&n,&x,&y);
35 LL sum;
36 sum=y/7-(x-1)/7;
37 printf("Case #%d: ",__ca);
38 if(n==0)
39 {
40 printf("%lld\n",sum);
41 }
42 else
43 {
44 LL mod=1;
45 for(i=0; i<n; i++)
46 {
47 scanf("%lld %lld",&ans[i].x,&ans[i].y);
48 }
49 LL anw=0;
50 int s;
51 for(j=1; j<(1<<n); j++)
52 {
53 int cr=0;
54 for(s=0; s<n; s++)
55 {
56 if(j&(1<<s))
57 {
58 mm[cr++]=s;
59 }
60 }
61 LL mod=1;
62 LL acm=0;
63 for(i=0; i<cr; i++)
64 {
65 mod*=ans[mm[i]].x;
66 }
67 for(i=0; i<cr; i++)
68 {
69 LL mod1=mod/ans[mm[i]].x;
70 LL ni=quick(mod1,ans[mm[i]].x-2,ans[mm[i]].x);
71 acm=(acm+mul(mul(mod1,ni,mod),ans[mm[i]].y,mod))%mod;
72 }
73 anw=acm;
74 LL ctx=0;
75 if(anw>y)
76 {
77 continue;
78 }
79 else
80 {
81 LL cha=x-anw;
82 LL nx,ny;
83 LL cha1=y-anw;
84 nx=cha/mod;
85 while(anw+mod*nx<x)
86 {
87 nx++;
88 } if(cha<0)nx=0;
89 ny=cha1/mod;
90 {
91 pair<LL ,LL>AK=P(mod,7);
92 LL nxx=(AK.first*acm%7+7)%7;
93 nxx=((-nxx)%7+7)%7;
94 if(ny>=nxx)
95 {
96 LL cx=max(nx-nxx,(LL)0);
97 LL cy=ny-nxx;
98 if(cx==0)ctx=cy/7+1;else {ctx=cy/7-(cx-1)/7;}
99 }
100 }
101 }
102 if(cr%2)
103 {
104 sum-=ctx;
105 }
106 else sum+=ctx;
107 } printf("%lld\n",sum);
108 }
109 }
110 return 0;
111 }
112 LL gcd(LL n, LL m)
113 {
114 if(m==0)
115 {
116 return n;
117 }
118 else if(n%m==0)
119 {
120 return m;
121 }
122 else
123 {
124 return gcd(m,n%m);
125 }
126 }
127 LL quick(LL n,LL m,LL mod)
128 {
129 LL cnt=1;n%=mod;
130 while(m)
131 {
132 if(m&1)
133 {
134 cnt=cnt*n%mod;
135 }
136 n=n*n%mod;
137 m/=2;
138 }
139 return cnt;
140 }
141 LL mul(LL n, LL m,LL p)
142 {
143 n%=p;
144 m%=p;
145 LL ret=0;
146 while(m)
147 {
148 if(m&1)
149 {
150 ret=ret+n;
151 ret%=p;
152 }
153 m>>=1;
154 n<<=1;
155 n%=p;
156 }
157 return ret;
158 }
159 pair<LL,LL>P(LL n,LL m)
160 {
161 if(m==0)
162 {
163 pair<LL,LL>ak;
164 ak=make_pair(1,0);
165 return ak;
166 }
167 else
168 {
169 pair<LL,LL>A=P(m,n%m);
170 LL nx=A.second;
171 LL ny=A.first;
172 ny=ny-(n/m)*nx;
173 A.first=nx;
174 A.second=ny;
175 return A;
176 }
177 }
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stdlib.h>
7 #include<iostream>
8 #include<vector>
9 #include<map>
10 #include<set>
11 #include<math.h>
12 using namespace std;
13 typedef long long LL;
14 typedef struct pp
15 {
16 LL x;
17 LL y;
18 } ss;
19 ss ans[20];
20 LL quick(LL n,LL m,LL mod);
21 LL mul(LL n, LL m,LL p);
22 pair<LL,LL>P(LL n,LL m);
23 LL gcd(LL n, LL m);
24 LL mm[20];
25 int main(void)
26 {
27 int i,j,k;
28 scanf("%d",&k);
29 int __ca=0;
30 LL n,x,y;
31 while(k--)
32 {
33 __ca++;
34 scanf("%lld %lld %lld",&n,&x,&y);
35 LL sum;
36 sum=y/7-(x-1)/7;
37 if(n==0)
38 {
39 printf("Case #%d: %lld\n",__ca,sum);
40 }
41 else
42 {
43 LL mod=1;
44 for(i=0; i<n; i++)
45 {
46 scanf("%lld %lld",&ans[i].x,&ans[i].y);
47 }
48 LL anw=0;
49 LL s;
50 for(j=1; j<(1<<n); j++)
51 { LL mod=1;
52 int cr=0;
53 for(s=0; s<n; s++)
54 {
55 if(j&(1<<s))
56 {
57 mm[cr++]=s;
58 mod*=ans[s].x;
59 }
60 }mod*=7;
61 LL acm=0;
62 for(i=0; i<cr; i++)
63 {
64 LL mod1=mod/ans[mm[i]].x;
65 LL ni=quick(mod1,ans[mm[i]].x-2,ans[mm[i]].x);
66 acm=(acm+mul(mul(mod1,ni,mod),ans[mm[i]].y,mod))%mod;
67 }
68 acm%=mod;
69 acm+=mod;
70 acm%=mod;
71 anw=acm;
72 LL ctx=0;
73 if(anw>y)
74 {
75 continue;
76 }
77 else
78 {
79 if(anw<x)
80 {
81 LL ax=x-anw-1;
82 LL ay=y-anw;
83 ctx+=ay/mod-ax/mod;
84 }
85 else if(anw>=x)
86 { LL ay=y-anw;
87 ctx+=ay/mod+1;
88 }
89 }
90 if(cr%2)
91 {
92 sum-=ctx;
93 }
94 else sum+=ctx;
95 } printf("Case #%d: %lld\n",__ca,sum);
96 }
97 }
98 return 0;
99 }
100 LL gcd(LL n, LL m)
101 {
102 if(m==0)
103 {
104 return n;
105 }
106 else if(n%m==0)
107 {
108 return m;
109 }
110 else
111 {
112 return gcd(m,n%m);
113 }
114 }
115 LL quick(LL n,LL m,LL mod)
116 {
117 LL cnt=1;n%=mod;
118 while(m>0)
119 {
120 if(m&1)
121 {
122 cnt=cnt*n%mod;
123 }
124 n=n*n%mod;
125 m/=2;
126 }
127 return cnt;
128 }
129 LL mul(LL n, LL m,LL p)
130 {
131 n%=p;
132 m%=p;
133 LL ret=0;
134 while(m)
135 {
136 if(m&1)
137 {
138 ret=ret+n;
139 ret%=p;
140 }
141 m>>=1;
142 n<<=1;
143 n%=p;
144 }
145 return ret;
146 }
147 pair<LL,LL>P(LL n,LL m)
148 {
149 if(m==0)
150 {
151 pair<LL,LL>ak;
152 ak=make_pair(1,0);
153 return ak;
154 }
155 else
156 {
157 pair<LL,LL>A=P(m,n%m);
158 LL nx=A.second;
159 LL ny=A.first;
160 ny=ny-(n/m)*nx;
161 A.first=nx;
162 A.second=ny;
163 return A;
164 }
165 }

Lucky7(hdu5768)的更多相关文章

  1. hdu-5768 Lucky7(容斥定理+中国剩余定理)

    题目链接: Lucky7 Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Pr ...

  2. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  3. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  4. hdu 5768 Lucky7 容斥

    Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  5. hdu 5768 Lucky7 中国剩余定理+容斥+快速乘

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  6. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  7. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  8. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  9. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

随机推荐

  1. 使用Openmp并行化

    运行命令:g++ -fopenmp xx.cpp -lgomp -lpthread -o xx.out 用例一: #include <omp.h> #include <stdio.h ...

  2. Linux驱动实践:如何编写【 GPIO 】设备的驱动程序?

    作 者:道哥,10+年嵌入式开发老兵,专注于:C/C++.嵌入式.Linux. 关注下方公众号,回复[书籍],获取 Linux.嵌入式领域经典书籍:回复[PDF],获取所有原创文章( PDF 格式). ...

  3. 巩固javaweb第十天

    巩固内容: HTML <meta> 元素 meta标签描述了一些基本的元数据. <meta> 标签提供了元数据.元数据也不显示在页面上,但会被浏览器解析. META 元素通常用 ...

  4. springcloud - alibaba - 3 - 整合config - 更新完毕

    0.补充 1.需求 如果我有这么一个请求:我想要gitee中的配置改了之后,我程序yml中的配置也可以跟着相应产生变化,利用原生的方式怎么做?一般做法如下: 而有了SpringCloud-alibab ...

  5. Hive(四)【DML 数据导入导出】

    目录 一.数据导入 1.1 [load]--向数据中装载数据 案例 1.2 [insert]--查询语句向表中插入数据 案例 1.3 [as select]--查询语句中创建表且加载数据 案例 1.4 ...

  6. 链栈(C++)

    链栈,字面意思,就是用链表来实现一个栈的数据结构. 那么,只需将单链表的头节点当作栈顶,尾节点当作栈底.入栈只需要头插,出栈只需头删即可.所以只需要吧单链表稍微阉割一下就可以得到链式栈了.代码如下 / ...

  7. OpenStack之七: compute服务(端口8774)

    注意此处的bug,参考o版 官网地址 https://docs.openstack.org/nova/stein/install/controller-install-rdo.html 控制端配置 # ...

  8. spring-boot aop 增删改操作日志 实现

    1.注解接口:import com.github.wxiaoqi.security.common.constant.Constants; import java.lang.annotation.*; ...

  9. Reactor之发射器(Flux、Mono)转换操作函数

    数据合并函数 由于业务需求有的时候需要将多个数据源进行合并,Reactor提供了concat方法和merge方法: concat public static <T> Flux<T&g ...

  10. HashMap、ConcurrentHashMap对比

    1.hashmap的put的原理,hashmap的扩容及计算槽的算法,线程安全的hashtable.ConcurrentHashMap的区别是什么 1.1 hashMap的put原理 什么时候变成红黑 ...