技术背景

在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编程环境解决方案。这里我们在线性拟合的基础上,再介绍一下MindSpore中使用线性神经网络来拟合多变量非线性函数的解决方案。

环境配置

在按照这篇博客中的方法进行安装和配置之后,可以在本地的docker镜像仓库中找到一个mindspore的镜像:

[dechin-manjaro gitlab]# docker images
REPOSITORY TAG IMAGE ID
mindspore latest 3a6951d9b900

由于运行Docker容器的时候最好是可以绑定本地的一个目录,所以可以用pwd先看一下本地的执行目录:

[dechin@dechin-manjaro mindspore]$ pwd
/home/dechin/projects/2021-python/mindspore

然后可以根据上述的名称和路径信息,创建一个新的docker容器环境:

[dechin-manjaro mindspore]# docker run -it --rm -v /home/dechin/projects/2021-python/mindspore:/home mindspore

这里运行的时候加了--rm选项,表示关闭容器后就删除容器,是一个一次性容器的选项。如果不加这个选项的话,会在docker ps -a下看到众多的被保存下来的容器环境,这会浪费不必要的资源。因此如果不对环境进行变更的话,建议还是加上--rm选项。

非线性函数拟合

在前面这篇博客中我们所拟合的是一个简单的线性函数:

\[y=ax+b
\]

那么在这里我们先考虑一个最简单的非线性函数的场景:

\[y=ax^2+b
\]

同样的还是两个参数,需要注意的是,如果要用线性神经网络来拟合非线性的函数,那么在给出参数的时候就要给出非线性的入参,以下是完整的代码(如果需要展示结果更好看的话可以参考上面提到的线性函数拟合的博客,这里我们为了提速,删除了很多非比要的模块):

# test_nonlinear.py

from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
import numpy as np
from mindspore import dataset as ds
from mindspore import nn, Tensor, Model
import time
from mindspore.train.callback import Callback, LossMonitor def get_data(num, a=2.0, b=3.0):
for _ in range(num):
x = np.random.uniform(-1.0, 1.0)
noise = np.random.normal(0, 0.03)
z = a * x ** 2 + b + noise
# 返回数据的时候就返回数据的平方
yield np.array([x**2]).astype(np.float32), np.array([z]).astype(np.float32) def create_dataset(num_data, batch_size=16, repeat_size=1):
input_data = ds.GeneratorDataset(list(get_data(num_data)), column_names=['x','z'])
input_data = input_data.batch(batch_size)
input_data = input_data.repeat(repeat_size)
return input_data data_number = 1600 # 一共产生1600组数据
batch_number = 16 # 分为16组分别进行优化
repeat_number = 2 # 重复2次,可以取到更低的损失函数值 ds_train = create_dataset(data_number, batch_size=batch_number, repeat_size=repeat_number)
dict_datasets = next(ds_train.create_dict_iterator()) class LinearNet(nn.Cell):
def __init__(self):
super(LinearNet, self).__init__()
self.fc = nn.Dense(1, 1, 0.02, 0.02) def construct(self, x):
x = self.fc(x)
return x net = LinearNet()
model_params = net.trainable_params()
print ('Param Shape is: {}'.format(len(model_params)))
for net_param in net.trainable_params():
print(net_param, net_param.asnumpy())
net_loss = nn.loss.MSELoss() # 设定优化算法,常用的是Momentum和ADAM
optim = nn.Momentum(net.trainable_params(), learning_rate=0.005, momentum=0.9)
model = Model(net, net_loss, optim) epoch = 1
# 设定每8个batch训练完成后就播报一次,这里一共播报25次
model.train(epoch, ds_train, callbacks=[LossMonitor(8)], dataset_sink_mode=False) for net_param in net.trainable_params():
print(net_param, net_param.asnumpy())

在容器内直接用python来运行这个代码:

root@9f9358769573:/home# python test_nonlinear.py
WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(818:140122680680576,MainProcess):2021-05-15-01:59:46.275.616 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
Param Shape is: 2
Parameter (name=fc.weight) [[0.02]]
Parameter (name=fc.bias) [0.02]
epoch: 1 step: 8, loss is 7.727301
epoch: 1 step: 16, loss is 0.9204254
epoch: 1 step: 24, loss is 0.051439833
epoch: 1 step: 32, loss is 0.40419307
epoch: 1 step: 40, loss is 0.24850279
epoch: 1 step: 48, loss is 0.0988866
epoch: 1 step: 56, loss is 0.0244435
epoch: 1 step: 64, loss is 0.05162067
epoch: 1 step: 72, loss is 0.043285627
epoch: 1 step: 80, loss is 0.013224524
epoch: 1 step: 88, loss is 0.014601769
epoch: 1 step: 96, loss is 0.0086541185
epoch: 1 step: 104, loss is 0.014336493
epoch: 1 step: 112, loss is 0.007790237
epoch: 1 step: 120, loss is 0.007644728
epoch: 1 step: 128, loss is 0.0090831155
epoch: 1 step: 136, loss is 0.009039238
epoch: 1 step: 144, loss is 0.0061546825
epoch: 1 step: 152, loss is 0.006427808
epoch: 1 step: 160, loss is 0.004290967
epoch: 1 step: 168, loss is 0.003127655
epoch: 1 step: 176, loss is 0.0044714734
epoch: 1 step: 184, loss is 0.003788504
epoch: 1 step: 192, loss is 0.0025329243
epoch: 1 step: 200, loss is 0.0034840193
Parameter (name=fc.weight) [[1.8488435]]
Parameter (name=fc.bias) [3.0522664]

最后优化的结果为\(f(x)=1.8488435x+3.0522664\),可以看到距离我们所预期的\(f(x)=2x+3\)已经是非常接近的,但是最后具体能训练到多少的精度,其实很大程度上跟训练集有关,这里因为训练集的范围取的比较小,可能会有一定的影响。

多变量函数拟合

不论是前面提到的线性函数拟合的场景,或者是上一个章节中单变量非线性函数的拟合,其实都只有1个输入参数,本章节介绍的场景有2个入参,这里我们要拟合的函数模型是:

\[z(x,y)=ax^2+by^3+c
\]

以下是完整的代码实例:

# test_nonlinear.py

from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
import numpy as np
from mindspore import dataset as ds
from mindspore import nn, Tensor, Model
import time
from mindspore.train.callback import Callback, LossMonitor def get_data(num, a=2.0, b=3.0, c=5.0):
for _ in range(num):
x = np.random.uniform(-1.0, 1.0)
y = np.random.uniform(-1.0, 1.0)
noise = np.random.normal(0, 0.03)
z = a * x ** 2 + b * y ** 3 + c + noise
# 返回参数的时候压缩在一个数组内
yield np.array([x**2,y**3]).astype(np.float32), np.array([z]).astype(np.float32) def create_dataset(num_data, batch_size=16, repeat_size=1):
input_data = ds.GeneratorDataset(list(get_data(num_data)), column_names=['x','z'])
input_data = input_data.batch(batch_size)
input_data = input_data.repeat(repeat_size)
return input_data data_number = 1600
batch_number = 16
repeat_number = 2 ds_train = create_dataset(data_number, batch_size=batch_number, repeat_size=repeat_number)
dict_datasets = next(ds_train.create_dict_iterator()) class LinearNet(nn.Cell):
def __init__(self):
super(LinearNet, self).__init__()
# 神经网络的input和output维度设置为2,1
self.fc = nn.Dense(2, 1, 0.02, 0.02) def construct(self, x):
x = self.fc(x)
return x net = LinearNet()
model_params = net.trainable_params()
print ('Param Shape is: {}'.format(len(model_params)))
for net_param in net.trainable_params():
print(net_param, net_param.asnumpy())
net_loss = nn.loss.MSELoss() optim = nn.Momentum(net.trainable_params(), learning_rate=0.005, momentum=0.9)
model = Model(net, net_loss, optim) epoch = 1
model.train(epoch, ds_train, callbacks=[LossMonitor(8)], dataset_sink_mode=False) for net_param in net.trainable_params():
print(net_param, net_param.asnumpy())

然后用同样的方法来运行:

root@9f9358769573:/home# python test_nonlinear.py
WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(1256:140024122265728,MainProcess):2021-05-15-02:03:11.597.713 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
Param Shape is: 2
Parameter (name=fc.weight) [[0.02 0.02]]
Parameter (name=fc.bias) [0.02]
epoch: 1 step: 8, loss is 23.713902
epoch: 1 step: 16, loss is 4.097528
epoch: 1 step: 24, loss is 0.6977275
epoch: 1 step: 32, loss is 1.6294805
epoch: 1 step: 40, loss is 1.6045574
epoch: 1 step: 48, loss is 0.33872497
epoch: 1 step: 56, loss is 0.2145875
epoch: 1 step: 64, loss is 0.15970881
epoch: 1 step: 72, loss is 0.18631926
epoch: 1 step: 80, loss is 0.093276486
epoch: 1 step: 88, loss is 0.030935105
epoch: 1 step: 96, loss is 0.065783374
epoch: 1 step: 104, loss is 0.036098357
epoch: 1 step: 112, loss is 0.021177795
epoch: 1 step: 120, loss is 0.022446468
epoch: 1 step: 128, loss is 0.024930779
epoch: 1 step: 136, loss is 0.025752623
epoch: 1 step: 144, loss is 0.019025242
epoch: 1 step: 152, loss is 0.012783089
epoch: 1 step: 160, loss is 0.008119936
epoch: 1 step: 168, loss is 0.010284519
epoch: 1 step: 176, loss is 0.0034211911
epoch: 1 step: 184, loss is 0.003315867
epoch: 1 step: 192, loss is 0.0035076286
epoch: 1 step: 200, loss is 0.0032196175
Parameter (name=fc.weight) [[1.9629341 2.9065483]]
Parameter (name=fc.bias) [5.004186]

这里得到的结果\(z(x,y)=1.9629341x^2+2.9065483y^3+5.004186\)跟我们所预期的结果\(z(x,y)=2x^2+3y^3+5\)也是非常接近的。

其他的函数类型

使用上一章节中所介绍的方法,不仅可以拟合多参数、多幂次的函数,同样的可以拟合一些其他的初等函数,比如:

\[z(x,y)=ax^2+b\ sin(y)+c
\]

完整的代码如下所示:

# test_nonlinear.py

from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
import numpy as np
from mindspore import dataset as ds
from mindspore import nn, Tensor, Model
import time
from mindspore.train.callback import Callback, LossMonitor def get_data(num, a=4.0, b=2.0, c=7.0):
for _ in range(num):
x = np.random.uniform(-1.0, 1.0)
y = np.random.uniform(-1.0, 1.0)
noise = np.random.normal(0, 0.03)
z = a * x ** 2 + b * np.sin(y) + c + noise
yield np.array([x**2,np.sin(y)]).astype(np.float32), np.array([z]).astype(np.float32) def create_dataset(num_data, batch_size=16, repeat_size=1):
input_data = ds.GeneratorDataset(list(get_data(num_data)), column_names=['x','z'])
input_data = input_data.batch(batch_size)
input_data = input_data.repeat(repeat_size)
return input_data data_number = 1600
batch_number = 16
repeat_number = 2 ds_train = create_dataset(data_number, batch_size=batch_number, repeat_size=repeat_number)
dict_datasets = next(ds_train.create_dict_iterator()) class LinearNet(nn.Cell):
def __init__(self):
super(LinearNet, self).__init__()
self.fc = nn.Dense(2, 1, 0.02, 0.02) def construct(self, x):
x = self.fc(x)
return x net = LinearNet()
model_params = net.trainable_params()
print ('Param Shape is: {}'.format(len(model_params)))
for net_param in net.trainable_params():
print(net_param, net_param.asnumpy())
net_loss = nn.loss.MSELoss() optim = nn.Momentum(net.trainable_params(), learning_rate=0.005, momentum=0.9)
model = Model(net, net_loss, optim) epoch = 1
model.train(epoch, ds_train, callbacks=[LossMonitor(8)], dataset_sink_mode=False) for net_param in net.trainable_params():
print(net_param, net_param.asnumpy())

还是同样的执行方法:

root@9f9358769573:/home# python test_nonlinear.py
WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(2132:139783326998656,MainProcess):2021-05-15-02:07:23.220.797 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
Param Shape is: 2
Parameter (name=fc.weight) [[0.02 0.02]]
Parameter (name=fc.bias) [0.02]
epoch: 1 step: 8, loss is 33.49754
epoch: 1 step: 16, loss is 5.38931
epoch: 1 step: 24, loss is 0.6019592
epoch: 1 step: 32, loss is 2.3307486
epoch: 1 step: 40, loss is 1.4274476
epoch: 1 step: 48, loss is 0.48646024
epoch: 1 step: 56, loss is 0.15924525
epoch: 1 step: 64, loss is 0.20410316
epoch: 1 step: 72, loss is 0.21361557
epoch: 1 step: 80, loss is 0.09532051
epoch: 1 step: 88, loss is 0.06947755
epoch: 1 step: 96, loss is 0.05294941
epoch: 1 step: 104, loss is 0.04545658
epoch: 1 step: 112, loss is 0.032882713
epoch: 1 step: 120, loss is 0.04866419
epoch: 1 step: 128, loss is 0.033258867
epoch: 1 step: 136, loss is 0.023843747
epoch: 1 step: 144, loss is 0.024475154
epoch: 1 step: 152, loss is 0.015055884
epoch: 1 step: 160, loss is 0.016890783
epoch: 1 step: 168, loss is 0.019164825
epoch: 1 step: 176, loss is 0.014314213
epoch: 1 step: 184, loss is 0.010082506
epoch: 1 step: 192, loss is 0.009690857
epoch: 1 step: 200, loss is 0.008122671
Parameter (name=fc.weight) [[3.6814337 1.9820771]]
Parameter (name=fc.bias) [7.106203]

得到的结果是\(z(x,y)=3.6814337x^2+1.9820771sin(y)+7.106203\),而我们所预期的结果为:\(z(x,y)=4x^2+2sin(y)+7\)。

总结概要

基于前面所介绍的MindSpore框架使用线性神经网络来拟合线性函数的一个方案,这里我们将其推广到多参数、多幂次的函数,甚至是一些初等的函数。但是对于更加复杂的嵌套函数,可能还要思考一下更加普适的解决方案。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/nonlinear.html

作者ID:DechinPhy

更多原著文章请参考:https://www.cnblogs.com/dechinphy/

使用MindSpore的线性神经网络拟合非线性函数的更多相关文章

  1. tensorflow神经网络拟合非线性函数与操作指南

    本实验通过建立一个含有两个隐含层的BP神经网络,拟合具有二次函数非线性关系的方程,并通过可视化展现学习到的拟合曲线,同时随机给定输入值,输出预测值,最后给出一些关键的提示. 源代码如下: # -*- ...

  2. 最小二乘法拟合非线性函数及其Matlab/Excel 实现(转)

    1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*r ...

  3. 最小二乘法拟合非线性函数及其Matlab/Excel 实现

    1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*r ...

  4. BP神经网络拟合给定函数

    近期在准备美赛,因为比赛需要故重新安装了matlab,在里面想尝试一下神将网络工具箱.就找了一个看起来还挺赏心悦目的函数例子练练手: y=1+sin(1+pi*x/4) 针对这个函数,我们首先画出其在 ...

  5. MATLAB神经网络(2) BP神经网络的非线性系统建模——非线性函数拟合

    2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用 ...

  6. MATLAB神经网络(3) 遗传算法优化BP神经网络——非线性函数拟合

    3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参 ...

  7. 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归

    Step1: 目标: 使用线性模拟器模拟指定的直线:y = 0.1*x + 0.3 代码: import tensorflow as tf import numpy as np import matp ...

  8. 非线性函数的最小二乘拟合及在Jupyter notebook中输入公式 [原创]

    突然有个想法,能否通过学习一阶RC电路的阶跃响应得到RC电路的结构特征——时间常数τ(即R*C).回答无疑是肯定的,但问题是怎样通过最小二乘法.正规方程,以更多的采样点数来降低信号采集噪声对τ估计值的 ...

  9. MATLAB神经网络(7) RBF网络的回归——非线性函数回归的实现

    7.1 案例背景 7.1.1 RBF神经网络概述 径向基函数是多维空间插值的传统技术,RBF神经网络属于前向神经网络类型,网络的结构与多层前向网络类似,是一种三层的前向网络.第一层为输入层,由信号源结 ...

随机推荐

  1. certutil绕过

    一般进内网过后我都会使用certutil下载文件,但在最近打一台内网机子的时候出现了certutil拒绝访问的情况,在本地搭建了一个环境尝试绕过certutil下载文件. 安装杀软更新到最新版本,开启 ...

  2. Pytorch数据读取与预处理实现与探索

    在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录 ...

  3. 优化 ASP.NET Core Docker 镜像的大小

    在这容器化的世界里,我们已经很少直接通过文件发布来运行asp.net core程序了.现在大多数情况下,我们都会使用docker来运行程序.在使用docker之前,我们往往需要打包我们的应用程序.as ...

  4. ElasticSearch实战系列十: ElasticSearch冷热分离架构

    前言 本文主要介绍ElasticSearch冷热分离架构以及实现. 冷热分离架构介绍 冷热分离是目前ES非常火的一个架构,它充分的利用的集群机器的优劣来实现资源的调度分配.ES集群的索引写入及查询速度 ...

  5. LamPiao靶机work_through

    前言 oscp靶机系列的第二篇.只追求做出来的话,这靶机蛮简单的.但是为了提升难度,尽量避免使用msf--毕竟考试只准用一次嘛,自己写了个exp. 正文 主机发现 nmap -sP 192.168.2 ...

  6. 使用Drone构建Docker映像

    使用Drone构建Docker映像 实践所用软件: Git Gogs Drone Docker 私有镜像仓库 实践链接:https://www.katacoda.com/courses/cicd/bu ...

  7. [^ ] 跟 [! ] 差在哪?-- Shell十三问<第十四问>

    [^ ] 跟 [! ] 差在哪?-- Shell十三问<第十四问> 这道题目说穿了, 就是要探讨 Wildcard(通配符)与 Regular Expression(正则表达式)的差别的. ...

  8. 结对作业-stage_2

    见队友博客:结对编程-stage_2

  9. SQL Server 实用语句

    创建临时表 #Test CREATE TABLE #Test( ID INT, Name VARCHAR(50) ) INSERT INTO #Test( ID, Name ) VALUES ( 1, ...

  10. 【spring cloud hoxton】Ribbon 真的能被 spring-cloud-loadbalancer 替代吗

    背景 早上刷圈看到 Spring Cloud Hoxton.M2 Released 的消息,随手发布到了我的知识星球,过了会有个朋友过来如下问题. 抽取半天时间学习spring-cloud-loadb ...