POJ1094查分约束,判断关系是否唯一
题意:
给你一些a<b的关系,然后有三组询问。
1 当前这组之后如果能确定这n个数的大小关系,那么就输出关系
2 当前时候出现bug,就是和前面如果冲突,那么就不行
3 最后的答案是否是不确定的,就是既没确定关系,也没出现bug.
思路:
这个题目要清楚一点就是处理顺序,上面的三个情况可能会出现重叠的情况,那么就按照上面的1 2 3的优先级来处理,至于判断当前关系是否成立和唯一我用的是差分约束,没有用拓扑排序,差分约束跑完最短路(或者最长路)没有死环,就证明没有bug,而任意点到起点的距离都不重复,那么就是唯一,否则就是当前不能确定,还有就是讨论组里面有个人给了两组数据,我觉得很有用,我就直接粘贴过来吧,为了大家方便理解题意。
分享两组关键性数据:
Posted by MyTalent at 2013-05-08 23:24:07 on Problem 1094
6 6
A<F
B<D
C<E
F<D
D<E
E<F
output:
Inconsistency found after 6 relations.
5 5
A<B
B<C
C<D
D<E
E<A
output:
Sorted sequence determined after 4 relations: ABCDE
第一个例子讲述的是:矛盾和多选,优先判断是否矛盾
第二个例子讲述的是:在矛盾之前如果有成功的,算是成功
#include<queue>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N_node 30
#define N_edge 1000
#define INF 100000000
using namespace std;
typedef struct
{
int to ,cost ,next;
}STAR;
typedef struct
{
int id ,v;
}ANS;
int list[N_node] ,tot;
int mks[N_node] ,mkt[N_node];
int s_x[N_node];
char str[1000+5][5];
STAR E[N_edge];
ANS ans[N_edge];
void add(int a ,int b ,int c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot;
}
bool camp(ANS a ,ANS b)
{
return a.v < b.v;
}
bool Spfa(int s ,int n)
{
for(int i = 0 ;i <= n ;i ++)
s_x[i] = INF;
memset(mks ,0 ,sizeof(mks));
memset(mkt ,0 ,sizeof(mkt));
queue<int>q;
q.push(s);
s_x[s] = 0;
mks[s] = mkt[s] = 1;
while(!q.empty())
{
int xin ,tou;
tou = q.front();
q.pop();
mks[tou] = 0;
for(int k = list[tou] ;k ;k = E[k].next)
{
xin = E[k].to;
if(s_x[xin] > s_x[tou] + E[k].cost)
{
s_x[xin] = s_x[tou] + E[k].cost;
if(!mks[xin])
{
mks[xin] = 1;
if(++mkt[xin] >= n) return 0;
q.push(xin);
}
}
}
}
return 1;
}
bool judeok(int n ,int id)
{
for(int i = 1 ;i <= n ;i ++)
{
ans[i].id = i;
ans[i].v = s_x[i];
}
sort(ans + 1 ,ans + n + 1 ,camp);
for(int i = 2 ;i <= n ;i ++)
if(ans[i].v == ans[i-1].v)
return 0;
printf("Sorted sequence determined after %d relations: " ,id);
for(int i = 1 ;i <= n ;i ++)
printf("%c" ,ans[i].id + 'A' - 1);
printf(".\n");
return 1;
}
int main ()
{
int n ,m ,i;
while(~scanf("%d %d" ,&n ,&m) && n + m)
{
for(i = 1 ;i <= m ;i ++)
scanf("%s" ,str[i]);
memset(list ,0 ,sizeof(list));
tot = 1;
for(i = 1 ;i <= n ;i ++)
add(0 ,i ,0);//虚拟出来一个0点,连接所有点,为了防止整个图不是连通的
for(i = 1 ;i <= m ;i ++)
{
int a = str[i][0] - 'A' + 1;
int b = str[i][2] - 'A' + 1;
add(b ,a ,-1);
int now = Spfa(0 ,n);
if(now && judeok(n ,i)) break;
if(!now)
{
printf("Inconsistency found after %d relations.\n" ,i);
break;
}
}
if(i == m + 1)
{
printf("Sorted sequence cannot be determined.\n");
continue;
}
}
return 0;
}
POJ1094查分约束,判断关系是否唯一的更多相关文章
- codevs 1242 布局(查分约束+SPFA)
/* 查分约束. 给出的约束既有>= 又有<= 这时统一化成一种 Sb-Sa>=x 建边 a到b 权值为x Sb-Sa<=y => Sa-Sb>=-y 建边 b到a ...
- 洛谷P1993 小 K 的农场(查分约束)
/* 加深一下对查分约束的理解 建图的时候为了保证所有点联通 虚拟一个点 它与所有点相连 权值为0 然后跑SPFA判负环 这题好像要写dfs的SPFA 要不超时 比较懒 改了改重复进队的条件~ */ ...
- poj 1201 Interval (查分约束)
/* 数组开大保平安. 查分约束: 输入的时候维护st和end 设每个点取元素di个 维护元素个数前缀和s Sbi-Sai-1>=ci 即:建立一条从ai-1到bi的边 权值为ci 表示ai到b ...
- BZOJ2330 糖果题解 查分约束
BZOJ 2330 糖果题解 差分约束系统 + SPFA 题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2330 Description ...
- POJ1364基本的查分约束问题
题意: 给了由n个数组成的一个数列,然后给你各种区间的和是大于ci还是小于ci啥的,最后问你是否冲突. 思路: 差分约束水题,不过wa了两次,原因处理区间问题的细节马虎了,说下 ...
- zoj Burn the Linked Camp (查分约束)
Burn the Linked Camp Time Limit: 2 Seconds Memory Limit: 65536 KB It is well known that, in the ...
- poj 1364 查分约束
#include<stdio.h> #include<iostream> #include<stack> #include<string.h> usin ...
- hdu 1384 查分约束
#include<stdio.h> /* 要善于挖掘隐含条件 dis[v]-dis[u]>=bian[i].w;一个条件(u,v,bian[i].w); dis[i+1]>=d ...
- Integer Intervals POJ - 1716_查分约束_
Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; co ...
随机推荐
- JDBC概要
JDBC基础应用 JDBC是Java连接数据库的一套接口,可以让我们方便的在Java中使用数据库.掌握JDBC的使用是Java开发的基本功. 预备工作 导入jar包.根据使用的数据库软件导入相应的ja ...
- SQL-MYSQL的时间格式转换(持续补充)
======================SQLSERVER===================================== SELECT CONVERT(varchar(100), GE ...
- 使用自定义注解和切面AOP实现Java程序增强
1.注解介绍 1.1注解的本质 Oracle官方对注解的定义为: Annotations, a form of metadata, provide data about a program that ...
- 【Git】敏感信息保护
保护Git仓库敏感信息 代码中无可避免有一些敏感信息,包含但不限于,数据库信息,密钥,账号信息等等.通常我们会把这些信息放在配置文件,这些信息若泄露会造成安全问题. 以前我们做法,是把配置文件通过.g ...
- css行高
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- dll注入与代码注入
学习<逆向工程核心原理>,在x64下dll注入与代码注入. dll注入主要用到CreateRemoteThread, HANDLE WINAPI CreateRemoteThread( _ ...
- 微信小程序--简约风博客小程序(基于云开发 - 全开源)
微信小程序--简约风博客小程序(基于云开发 - 全开源) 项目启动纯属突发奇想,想看看博客小程序,例如wehalo博客小程序,但是感觉自建平台还要浪费自己的服务器算力,还没有访问量,省省吧. 本着白嫖 ...
- (五)SpringBoot启动过程的分析-刷新ApplicationContext
-- 以下内容均基于2.1.8.RELEASE版本 紧接着上一篇[(四)SpringBoot启动过程的分析-预处理ApplicationContext] (https://www.cnblogs.co ...
- 【linux】驱动-7-平台设备驱动
目录 前言 7. 平台设备驱动 7.1 平台总线 7.1.1 平台总线注册和匹配方式 7.1.2 源码分析 7.2 平台设备 7.2.1 platform_device 7.2.2 设备信息 7.2. ...
- 原来Java的发家史是这么回事
java的诞生: 1991 年Sun公司成立了一个计算机开发小组,由James Gosling等人开发一款希望用于控制嵌入在有线电视交换盒.PDA等的微处理器的计算机语言,本来他们想直接扩展C++,后 ...