[bzoj1072]排列
考虑用状压dp枚举排列,即f[i][j]表示当前状态为i,余数为j的方案数,考虑在末尾新增一个字符来转移即可,注意最后答案要除以排列组合
1 #include<bits/stdc++.h>
2 using namespace std;
3 int t,d,n,tot[15],f[2005][1005];
4 char s[15];
5 int main(){
6 scanf("%d",&t);
7 while (t--){
8 scanf("%s%d",s,&d);
9 n=strlen(s);
10 memset(tot,0,sizeof(tot));
11 for(int i=0;s[i];i++)tot[s[i]-'0']++;
12 memset(f,0,sizeof(f));
13 f[0][0]=1;
14 for(int i=0;i<(1<<n);i++)
15 for(int j=0;j<n;j++)
16 if (!(i&(1<<j)))
17 for(int k=0;k<d;k++){
18 int kk=(k*10+s[j]-'0')%d;
19 f[i+(1<<j)][kk]=f[i+(1<<j)][kk]+f[i][k];
20 }
21 for(int i=0;i<10;i++)
22 for(int j=1;j<=tot[i];j++)f[(1<<n)-1][0]/=j;
23 printf("%d\n",f[(1<<n)-1][0]);
24 }
25 }
[bzoj1072]排列的更多相关文章
- bzoj1072排列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1072 好像是这方面的裸题. 整除k 要想转移需要记录下 达到模k所有余数 的方案数. 为了生 ...
- BZOJ1072 排列perm 【状压dp】
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能 被2整除,其中末位为2的有30种,末位为4的有60种. Inpu ...
- DP——由蒟蒻到神犇的进阶之路
开始更新咯 DP专题[题目来源BZOJ] 一.树形DP 1.bzoj2286消耗战 题解:因为是树形结构,一个点与根节点不联通,删一条边即可, 于是我们就可以简化这棵树,把有用的信息建立一颗虚树,然后 ...
- 【BZOJ1072】排列(搜索)
[BZOJ1072]排列(搜索) 题面 BZOJ 洛谷 题解 算下复杂度,如果用\(next\_permutation\) 那就是\(10!\times 10\times 15\),复杂度不太对 那好 ...
- [BZOJ1072][SCOI2007] 排列prem
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...
- 【BZOJ1072】【SCOI2007】排列 [状压DP]
排列 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给一个数字串s和正整数d, 统计s有多 ...
- 【枚举】bzoj1072 [SCOI2007]排列perm
暴力,next_permutation函数用于枚举出下一个排列.sscanf函数用于将字符串转化成数字. #include<cstdio> #include<cstring> ...
- [BZOJ1072][SCOI2007]排列perm 状压dp
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2488 Solved: 1546[Submit][St ...
- [bzoj1072][SCOI2007][排列perm] (状态压缩+数位dp+排列去重)
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...
随机推荐
- dubbo注册中心占位符无法解析问题
dubbo注册中心占位符无法解析问题 1.背景 最近搞了2个老项目,想把他们融合到一起.这俩项目情况简介如下: 项目一:基于SpringMVC + dubbo,配置读取本地properties文件,少 ...
- kettle使用
Kettle的安装及简单使用 目录 Kettle的安装及简单使用 一.kettle概述 二.kettle安装部署和使用 Windows下安装 案例1:MySQL to MySQL 案例2:使用作业执行 ...
- 【Spring】IoC容器 - 依赖注入
前言 上一篇文章已经学习了[依赖查找]相关的知识,这里详细的介绍一下[依赖注入]. 依赖注入 - 分类 因为自己是基于小马哥的脉络来学习,并且很认可小马哥梳理的分类方式,下面按照小马哥思想为[依赖注入 ...
- 【UE4 设计模式】简单工厂模式 Simple Factory Pattern
概述 描述 又称为静态工厂方法 一般使用静态方法,根据参数的不同创建不同类的实例 套路 创建抽象产品类 : 创建具体产品类,继承抽象产品类: 创建工厂类,通过静态方法根据传入不同参数从而创建不同具体产 ...
- 合理占用服务器空闲GPU[狗头]
合理占用服务器GPU资源[狗头] 场景:当你想进行模型训练时,发现GPU全被占用,怎么办? 解决方案1: 在终端输入如下命令:watch -n 设定刷新时间(s) nvidia-smi 然后记起来了回 ...
- C语言编程基础有网盘资料哦
刚开始看STM32的库函数,会有很多疑惑,例如指针怎么用,结构体跟指针怎么配合,例如函数的参数有什么要求,如何实时更新IO口的数据等.如果重新进行C语言的学习,那么要学很久才能够系统地认识.本文则将比 ...
- 一张图彻底搞懂Spring循环依赖
1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...
- Spring Security:简单的保护一个SpringBoot应用程序(总结)
Spring Security 在 Java类中的配置 在 Spring Security 中使用 Java配置,可以轻松配置 Spring Security 而无需使用 XML . 在Spring ...
- VIVADO 2017.4配置MIG IP注意事项
1.2GB的single rank SODIMMs配置pin还是和以前一样没有问题: 2.8GB SODIMMs配置pin需要注意4点: (1).所有的DDR3引脚都需要在连续的BANK上,例如Z71 ...
- 2021CCPC河南省省赛
大一萌新,第一次打比赛,虽然是线下赛,但送气球的环节还是很赞的! 这里主要是补一下自己的弱项和考试时没有做出来的题目. 1002(链接之后再放,官方还没公开题目...) 先说一下第二题,这个题一看就是 ...