记$p_{i}$表示该位置是否有硬币

称使得$p_{i,i+1,i+2}$都变为1的操为对$i$的添加操作,使得$p_{i,i+1,i+2}$都变为0的操作为对$i$的删除操作

考虑一个简单的操作:若$p_{i}=1$,且$p_{i+1}=p_{i+2}=p_{i+3}=0$,可以通过执行对$i+1$的添加操作、对$i$的删除操作,使得$p_{i}$"移动"到$p_{i+3}$,我们将这个称之为对$i$的移动操作

接下来,我们证明一个$p_{i}$能通过添加和删除操作得到,当且仅当其能通过添加和移动操作得到:

由于移动操作是由添加和删除操作组合得到的,因此充分性满足

称$p_{i}=1$的来源为最后一次影响到$i$(由于最终$p_{i}=1$,必然是使其变为1)的操作位置,注意到对于来源相同的两个$p_{i}=p_{j}=1$,对其操作的时间也必然相同

考虑当执行对$i$删除操作时,对$p_{i},p_{i+1},p_{i+2}$的1的来源分类讨论,分为三种情况:

1.通过对$i$的添加操作得到,不妨将对$i$的删除操作提前到该次操作,显然无意义;

2.通过对$i-2$和$i+1$的添加操作,这也就是对$i$的移动操作;

3.通过对$i-1$和$i+2$的添加操作,这也就是对$i$和$i+1$的移动操作,等价于先对$i+1$、再对$i$的移动操作

由此,即证明删除操作都可以用添加和移动操作代替

接下来,考虑移动操作不会经过别的1,因此不会改变1的相对顺序,由此可以发现合法当且仅当:

选择第一次操作的3个1(模3不同余),将序列分为4部分(通过移动位置会发生改变),由于其他的1不会移动经过这3个1,要求每一个内部都是合法的

用$f_{i,j}$表示仅考虑区间$[i,j]$的最大值,若$i$或$j$中有一个未被选择,则$f_{i,j}=\max(f_{i+1,j},f_{i,j-1})$,否则分为两种情况:

1.左右端点是同一个,那么枚举中间的点转移即可(嵌套关系)

2.左右端点不是同一个,那么枚举两个的划分即可(并列关系)

时间复杂度为$o(n^{3})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 505
4 int n,a[N],f[N][N];
5 int main(){
6 scanf("%d",&n);
7 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
8 for(int i=n;i;i--)
9 for(int j=i+1;j<=n;j++){
10 f[i][j]=max(f[i+1][j],f[i][j-1]);
11 for(int k=i;k<j;k++)f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]);
12 for(int k=i+1;k<j;k+=3)
13 if ((j-k)%3==1)f[i][j]=max(f[i][j],f[i+1][k-1]+f[k+1][j-1]+a[i]+a[j]+a[k]);
14 }
15 printf("%d",f[1][n]);
16 }

[atAGC050B]Three Coins的更多相关文章

  1. [LeetCode] Arranging Coins 排列硬币

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...

  2. ACM: Gym 101047M Removing coins in Kem Kadrãn - 暴力

     Gym 101047M Removing coins in Kem Kadrãn Time Limit:2000MS     Memory Limit:65536KB     64bit IO Fo ...

  3. Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)

    传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...

  4. csuoj 1119: Collecting Coins

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1119 1119: Collecting Coins Time Limit: 3 Sec  Memo ...

  5. Coins

    Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hi ...

  6. hdu 1398 Square Coins (母函数)

    Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  7. (混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)

    http://poj.org/problem?id=3260   Description Farmer John has gone to town to buy some farm supplies. ...

  8. POJ3260The Fewest Coins[背包]

    The Fewest Coins Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6299   Accepted: 1922 ...

  9. POJ1742 Coins[多重背包可行性]

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 34814   Accepted: 11828 Descripti ...

随机推荐

  1. Java基础之(六):变量、运算符与JavaDoc

    变量.常量 一.变量的命名规范 首字母只能以字母(A-Z或者a-z)或者美元符($)或者下划线(_)开头,不能以数字开头,首字母之后只能跟字母(AZ或者az)或者数字,不能跟美元符或者下划线 源码 p ...

  2. CentOS7部署Prometheus

    部署Prometheus监控报警系统 一.Prometheus介绍 Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库(TSDB):Prometheus使用Go语言开发, ...

  3. Dapr-简介及环境搭建

    一.Dapr是什么? Dapr 是一个可移植的.事件驱动的运行时,它使任何开发人员能够轻松构建出弹性的.无状态和有状态的应用程序,并可运行在云平台或边缘计算中,它同时也支持多种编程语言和开发框架. 在 ...

  4. C#开发BIMFACE系列48 Nginx部署并加载离线数据包

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前一篇博客<C#开发BIMFACE系列47 IIS部署并加载离线数据包>中详细介绍了IIS部署并访问的完整步 ...

  5. hdoj_Problem1.1.8_A+B for Input-Output Practice (VIII)

    A+B for Input-Output Practice (VIII) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  6. 内网渗透DC-2靶场通关(CTF)

    为了更好的阅读体验,请在pc端打开我的个人博客 DC系列共9个靶场,本次来试玩一下DC-2,共有5个flag,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware ...

  7. __str__ __repr__区别

    当print 实例化对象的时候,可以直接输出__str__ 中的 return结果 在console中 直接输实例对象c 只能输出<__main__.Cycle object at 0x0000 ...

  8. 乘风破浪,遇见最美Windows 11之新微软商店(Microsoft Store)生态 - 安卓(Android™)开发体验指南

    什么是Windows 11的安卓(Android)应用 2021年6月25日,微软召开线上发布会,对外宣告下一代Windows操作系统Windows 11,Windows 11为用户重新打造的Micr ...

  9. Redis使用过程中有哪些注意事项?看看BAT这类的公司是正确使用Redis的!!

    Redis使用过程中要注意的事项 Redis使用起来很简单,但是在实际应用过程中,一定会碰到一些比较麻烦的问题,常见的问题有 redis和数据库数据的一致性 缓存雪崩 缓存穿透 热点数据发现 下面逐一 ...

  10. 小白自制Linux开发板 七. USB驱动配置

    本文章基于https://whycan.com/t_3087.htmlhttps://whycan.com/t_6021.html整理 F1c100s芯片支持USB的OTG模式,也就是可以通过更改Us ...