记$p_{i}$表示该位置是否有硬币

称使得$p_{i,i+1,i+2}$都变为1的操为对$i$的添加操作,使得$p_{i,i+1,i+2}$都变为0的操作为对$i$的删除操作

考虑一个简单的操作:若$p_{i}=1$,且$p_{i+1}=p_{i+2}=p_{i+3}=0$,可以通过执行对$i+1$的添加操作、对$i$的删除操作,使得$p_{i}$"移动"到$p_{i+3}$,我们将这个称之为对$i$的移动操作

接下来,我们证明一个$p_{i}$能通过添加和删除操作得到,当且仅当其能通过添加和移动操作得到:

由于移动操作是由添加和删除操作组合得到的,因此充分性满足

称$p_{i}=1$的来源为最后一次影响到$i$(由于最终$p_{i}=1$,必然是使其变为1)的操作位置,注意到对于来源相同的两个$p_{i}=p_{j}=1$,对其操作的时间也必然相同

考虑当执行对$i$删除操作时,对$p_{i},p_{i+1},p_{i+2}$的1的来源分类讨论,分为三种情况:

1.通过对$i$的添加操作得到,不妨将对$i$的删除操作提前到该次操作,显然无意义;

2.通过对$i-2$和$i+1$的添加操作,这也就是对$i$的移动操作;

3.通过对$i-1$和$i+2$的添加操作,这也就是对$i$和$i+1$的移动操作,等价于先对$i+1$、再对$i$的移动操作

由此,即证明删除操作都可以用添加和移动操作代替

接下来,考虑移动操作不会经过别的1,因此不会改变1的相对顺序,由此可以发现合法当且仅当:

选择第一次操作的3个1(模3不同余),将序列分为4部分(通过移动位置会发生改变),由于其他的1不会移动经过这3个1,要求每一个内部都是合法的

用$f_{i,j}$表示仅考虑区间$[i,j]$的最大值,若$i$或$j$中有一个未被选择,则$f_{i,j}=\max(f_{i+1,j},f_{i,j-1})$,否则分为两种情况:

1.左右端点是同一个,那么枚举中间的点转移即可(嵌套关系)

2.左右端点不是同一个,那么枚举两个的划分即可(并列关系)

时间复杂度为$o(n^{3})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 505
4 int n,a[N],f[N][N];
5 int main(){
6 scanf("%d",&n);
7 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
8 for(int i=n;i;i--)
9 for(int j=i+1;j<=n;j++){
10 f[i][j]=max(f[i+1][j],f[i][j-1]);
11 for(int k=i;k<j;k++)f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]);
12 for(int k=i+1;k<j;k+=3)
13 if ((j-k)%3==1)f[i][j]=max(f[i][j],f[i+1][k-1]+f[k+1][j-1]+a[i]+a[j]+a[k]);
14 }
15 printf("%d",f[1][n]);
16 }

[atAGC050B]Three Coins的更多相关文章

  1. [LeetCode] Arranging Coins 排列硬币

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...

  2. ACM: Gym 101047M Removing coins in Kem Kadrãn - 暴力

     Gym 101047M Removing coins in Kem Kadrãn Time Limit:2000MS     Memory Limit:65536KB     64bit IO Fo ...

  3. Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)

    传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...

  4. csuoj 1119: Collecting Coins

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1119 1119: Collecting Coins Time Limit: 3 Sec  Memo ...

  5. Coins

    Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hi ...

  6. hdu 1398 Square Coins (母函数)

    Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  7. (混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)

    http://poj.org/problem?id=3260   Description Farmer John has gone to town to buy some farm supplies. ...

  8. POJ3260The Fewest Coins[背包]

    The Fewest Coins Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6299   Accepted: 1922 ...

  9. POJ1742 Coins[多重背包可行性]

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 34814   Accepted: 11828 Descripti ...

随机推荐

  1. IL合集

    由于之前写的表达式树合集,未编写任何注释且是以图片的形式展现给大家,在这里向各位看官道歉了,接下来为大家奉上新鲜出炉的香喷喷的IL合集,后面会持续更新,各位看官点关注不迷路,之前答应的手写IOC以及多 ...

  2. xml文件报Element 'beans' cannot have character [children],because the type's content type is element

    写springMvc.xml文件时,偶然遇到 Element 'beans' cannot have character [children],because the type's content t ...

  3. ORM框架查询数据库时返回指定的字段

    django model.objects.filter() 查询指定字段 1.model.objects.filter().values('field_name'),单个字段 2.model.obje ...

  4. 使用 z3 进行逆向 解密字符串

    在逆向过程中,我们知道了一个结果值,和一段计算代码.这个时候我们需要知道计算前的值是什么:需要用到 z3 模块来进行解题 z3项目地址 Java代码如下: private String b(Strin ...

  5. Golang通脉之结构体

    Go语言中的基础数据类型可以表示一些事物的基本属性,但是要表达一个事物的全部或部分属性时,这时候再用单一的基本数据类型明显就无法满足需求了,Go语言提供了一种自定义数据类型,可以封装多个基本数据类型, ...

  6. 敏捷 Scrum Master 的難點

    什麼是 Scrum Master? Scrum master 是一個團隊角色,負責確保團隊遵守敏捷方法和原則並符合團隊的流程和實踐. Scrum Master 促進敏捷開發團隊成員之間的協作.Scru ...

  7. 2019OO第四单元作业总结&OO课程整体总结

    第四单元作业总结 第四单元的作业主题是UML图的解析,通过对UML图代码的解析,我对UML图的结构以及各种元素之间的关系的理解更加深入了. ------------------------------ ...

  8. oo第三单元学习总结

    OO第三单元小结 一.JML语言理论基础及工具链梳理 在本单元我们学习了JML语言的一些基础知识,能够让我们看懂简单的JML规格并写出对应代码, 主要用到的知识点有:   1.requires 该子句 ...

  9. Seata的一些概念

    Seata的一些概念 一.什么是seata 二.AT模式的介绍 1.前提条件 2.整体机制 3.读写隔离的实现 1.写隔离 2.读隔离 三.事务分组 1.事务分组是什么? 2.通过事务分组如何找到后端 ...

  10. 一文读懂Android进程及TCP动态心跳保活

    一直以来,APP进程保活都是 各软件提供商 和 个人开发者 头疼的问题.毕竟一切的商业模式都建立在用户对APP的使用上,因此保证APP进程的唤醒,提升用户的使用时间,便是软件提供商和个人开发者的永恒追 ...