CF1554E You
考虑到删点操作的实质是指认边的方向。
由于这是一棵树,所以有很好的性质。
我们完全可以以此从树叶开始,往上拓扑进行,按照对某个数的取膜的大小来进行操作。
由此可知,除了 \(1\) 以外,任意 \(2 \leq k\) 都有可能,且只有一种方案。
那么如何判断方案是当下的问题。
考虑到我们的的操作过程,我们发现其实在每个质数的同余系下,有且只有一个答案可能存在。
又由于 \(m = n - 1 = \sum a[i]\),那么我们把 \(m\) 质数分解,对这些质数的同余系进行讨论就好。
同时总方案数为 \(2 ^ {n - 1}\) ,依照容斥原理,那么 \(k = 1\) 时答案为 \(2 ^ {n - 1} - \sum_{i = 2} f[i]\)
#include<iostream>
#include<cstdio>
#include<queue>
#define ll long long
#define N 100005
#define mod 998244353
ll T;
ll n;
ll head[N],cnt;
ll in[N],iin[N];
ll a[N],b[N];
ll f[N];
struct P{
int to,next;
}e[N << 1];
inline void clear(){
for(int i = 1;i <= n;++i)
head[i] = in[i] = iin[i] = a[i] = b[i] = 0,f[i] = 0;
for(int i = 1;i <= cnt;++i)
e[i].to = e[i].next = 0;
cnt = 0;
}
inline void add(int x,int y){
e[++cnt].to = y;
e[cnt].next = head[x];
head[x] = cnt;
in[y] ++ ;
}
inline ll qpow(ll a,ll b){
ll ans = 1;
while(b){
if(b & 1)ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
std::queue<int>QWQ;
ll vis[N];
inline ll gcd(ll x,ll y){
return (x == 0) ? y : gcd(y % x,x);
}
inline ll find(ll x){//找出在该同余系下的答案。
for(int i = 1;i <= n;++i)
iin[i] = in[i],a[i] = b[i] = 0,vis[i] = 0;
for(int i = 1;i <= n;++i)
if(iin[i] == 1)//成为叶子
QWQ.push(i);
while(QWQ.size()){
int u = QWQ.front();
QWQ.pop();
vis[u] = 1;
for(int i = head[u];i;i = e[i].next){
int v = e[i].to;
if(vis[v])continue;
if(a[u] == 0)a[v] = (a[v] + 1) % x,b[v] ++ ;else a[u] = (a[u] + 1) % x,b[u] ++;
iin[v] -- ;
if(iin[v] == 1)
QWQ.push(v);
}
}
ll ans = b[1];
for(int i = 2;i <= n;++i)
ans = gcd(ans,b[i]);
return ans;
}
int main(){
scanf("%lld",&T);
while(T -- ){
scanf("%lld",&n);
clear();
for(int i = 1;i <= n - 1;++i){
ll x,y;
scanf("%lld%lld",&x,&y);
add(x,y);
add(y,x);
}
ll m = n - 1;
for(int i = 2;i * i <= m;++i){
if(m % i == 0){
ll si = find(i);
if(si % i == 0)
f[si] = 1 ;
while(m % i == 0 && i != 1)m /= i;
}
}
if(m > 1){
ll si = find(m);
if(si % m == 0)
f[si] = 1 ;
}
f[1] = (f[1] + qpow(2,n - 1)) % mod;
for(int i = 2;i <= n;++i)
f[1] = (f[1] - f[i] + mod) % mod;
for(int i = 1;i <= n;++i)
std::cout<<f[i]<<" ";
puts("");
}
}
CF1554E You的更多相关文章
- Involuting Bunny! (2021.8)
CF1555F & Submission. Tags:「A.生成树」「B.Tricks」 分类处理询问的 trick:连接两个连通块的边显然合法,先用这些边构建生成森林.发现每条边 ...
随机推荐
- Billu_b0x2内网渗透(多种提权方法)靶场-vulnhub
个人博客阅读体验更佳 本次来试玩一下vulnhub上的Billu_b0x2,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware可能存在兼容性问题.靶场推荐使用N ...
- 为Kubernetes集群添加用户认证
Kubernetes中的用户 K8S中有两种用户(User)--服务账号(ServiceAccount)和普通意义上的用户(User) ServiceAccount是由K8S管理的,而User通常是在 ...
- [技术博客]Unity3d 动画控制
在制作游戏时,导入的箱子模型本身自带动画.然而,它的动画是一个从打开到关闭的完整过程,并且没有给出控制打开关闭的方法. 最直接的想法是对该动画进行拆分,再封装成不同的动画状态,但是不巧的是,这个动画被 ...
- RabbitMQ处理未被路由的消息
我们经常使用消息队列进行系统之间的解耦,日志记录等等.但是有时候我们在使用 RabbitMQ时,由于exchange.bindKey.routingKey没有设置正确,导致我们发送给交换器(excha ...
- python基础语法--字典的遍历
原文链接:https://blog.csdn.net/normang/article/details/55804231 (1)遍历key值 >>> a {'a': '1', 'b': ...
- LP-DDR 和其他 DDR
一篇技術文檔比較 LP-DDR 和其他 DDR. 就觀念來說,LP-DDR 就是 Low Power 的 DDR:但就架構來說,LP-DDR 和其他 DDR 是截然不同的東西. 他們分屬不同的 JDE ...
- Redis的浅入门
Redis的浅入门 # 缓存的思想 问题提出:我们的用户数量上亿,如果登录,访问数据库user特别耗时,该怎么办?--提出缓存 方法:怎样从缓存在获取数据? *有数据: 直接返回 *无数据: (1)从 ...
- 链表中环的入口结点 牛客网 剑指Offer
链表中环的入口结点 牛客网 剑指Offer 题目描述 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null. # class ListNode: # def __init__(se ...
- hdu 4786 Fibonacci Tree (最小、最大生成树)
题意: N个点,M条边.每条边连接两个点u,v,且有一个权值c,c非零即一. 问能否将N个点形成一个生成树,并且这棵树的边权值和是一个fibonacii数. (fibonacii数=1,2,3,5,8 ...
- hdu 2586 How far away? (LCA模板)
题意: N个点,形成一棵树,边有长度. M个询问,每个询问(a,b),询问a和b的距离 思路: 模板题,看代码.DFS预处理算出每个结点离根结点的距离. 注意: qhead[maxn],而不是qhea ...