P2120 [ZJOI2007]仓库建设

怎么说呢?算是很水的题了吧...

只要不要一开始就把dp想错就行...

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+10;
const ll INF=2e18;
ll n,f[N],x[N],p[N],c[N],q[N],l,r,sum[N],sump[N];//f[i][0/1]表示i及之后的工厂产品
inline int read()//i工厂建仓库的最小代价
{
int x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
}
inline double X(int i) {return sump[i];}
inline double Y(int i) {return f[i]+sum[i];}
inline double xie(int i,int j) {return (Y(i)-Y(j))/(X(i)-X(j));}
int main()
{
// freopen("1.in","r",stdin);
n=read();
for(int i=1;i<=n;++i) x[i]=read(),p[i]=read(),c[i]=read();
for(int i=1;i<=n;++i) sum[i]=sum[i-1]+x[i]*p[i],sump[i]=sump[i-1]+p[i];
for(int i=1;i<=n;++i) f[i]=INF;
f[0]=0;
for(int i=1;i<=n;++i)
{
while(l<r&&xie(q[l],q[l+1])<=x[i]) ++l;
int j=q[l];
f[i]=f[j]+(sump[i-1]-sump[j])*x[i]-(sum[i-1]-sum[j])+c[i];
while(l<r&&xie(i,q[r])<=xie(q[r],q[r-1])) --r;
q[++r]=i;
//for(int j=0;j<i;++j) f[i]=min(f[i],f[j]+(sump[i-1]-sump[j])*x[i]-(sum[i-1]-sum[j]));
//f[i]+=c[i];
}
printf("%lld",f[n]);
return 0;
}

P2120 [ZJOI2007]仓库建设的更多相关文章

  1. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  2. 洛谷 P2120 [ZJOI2007] 仓库建设

    链接: P2120 题意: 有 \(n\) 个点依次编号为 \(1\sim n\).给出这 \(n\) 个点的信息,包括位置 \(x_i\),所拥有的的物品数量 \(p_i\),在此建设一个仓库的费用 ...

  3. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  4. P2120 [ZJOI2007] 仓库建设(斜率优化DP)

    题意:\(1\sim N\) 号工厂,第\(i\) 个工厂有\(P_i\)个成品,第\(i\)个工厂建立仓库需要\(C_i\)的费用,该工厂距离第一个工厂的距离为\(X_i\),编号小的工厂只能往编号 ...

  5. P2120 [ZJOI2007]仓库建设(dp+斜率优化)

    思路 首先暴力DP显然,可以得20分 加上一个前缀和优化,可以得到40分 然后上斜率优化 设\(sum_i\)为\(\sum_{1}^iP_i\),\(sump_i\)为\(\sum_{1}^{i}P ...

  6. 【洛谷】2120:[ZJOI2007]仓库建设【斜率优化DP】

    P2120 [ZJOI2007]仓库建设 题目背景 小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题. 题目描述 L公司有N个工厂,由高到底分布在一座山上. 工 ...

  7. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  8. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  9. 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3940  Solved: 1736 Description ...

随机推荐

  1. Php实现简易购物商城系统

    实现功能: 1.系统功能模块包括: 1)登陆注册模块 包括验证码.找回密码.注册模块中要使用Ajax判断用户名是否已经存在,使用正则表达式判断电子邮件.手机号和用户密码的格式是否合法. 2)用户管理模 ...

  2. 【C++基础教程】第一课

    一,C++基础 1.1.什么是C++ C++是一种面向对象的编程语言,如今被广泛应用于各种行业. 1.2.C++的语法特点 一般C++的程序长成这个样子: #include<...> // ...

  3. Java基础系列(6)- 注释

    注释 平时我们编写代码,在代码量比较少的时候,我们还可以看懂自己写的,但是当项目结构一旦复杂起来,我们就需要用到注释了 注释不会被执行,是给开发人员看的 书写注释是一个非常好的习惯 Java中的注释有 ...

  4. jQuery has been removed

    jQuery has been removed, 新的项目不要用jQuery了 这些问题都已经有了解决方案 * $()选择器, * $.ajax, * $dom.on("click" ...

  5. linux 修改文件名称的三中方法

    一:rename "old.html" "oldd.HTML" *html参数.有什么.改为什么 ,目标文件: 二 : #!/bin/sh Dirname=&q ...

  6. redis被360禁止,设置启动

    https://blog.csdn.net/blick__winkel/article/details/77986481 一.下载windows版本的Redis 去官网找了很久,发现原来在官网上可以下 ...

  7. appium+python自动化:获取元素属性get_attribute

    使用get_attribute()获取元素属性,括号里应该填写什么? 查看appium源码 如果是获取resource-id,填写resourceId self.driver.find_element ...

  8. "错误: 找不到或无法加载主类"解决办法

    前言:记上次一个找了个把小时的问题(很烦这些配置) 原因: 从svn下checkOut的项目 在application的配置的输出class路径为main,而class文件路径是在项目名的根路径下,所 ...

  9. IdentityServer4[3]:使用客户端认证控制API访问(客户端授权模式)

    使用客户端认证控制API访问(客户端授权模式) 场景描述 使用IdentityServer保护API的最基本场景. 我们定义一个API和要访问API的客户端.客户端从IdentityServer请求A ...

  10. 面试官:为什么需要Java内存模型?

    面试官:今天想跟你聊聊Java内存模型,这块你了解过吗? 候选者:嗯,我简单说下我的理解吧.那我就从为什么要有Java内存模型开始讲起吧 面试官:开始你的表演吧. 候选者:那我先说下背景吧 候选者:1 ...