P2120 [ZJOI2007]仓库建设

怎么说呢?算是很水的题了吧...

只要不要一开始就把dp想错就行...

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+10;
const ll INF=2e18;
ll n,f[N],x[N],p[N],c[N],q[N],l,r,sum[N],sump[N];//f[i][0/1]表示i及之后的工厂产品
inline int read()//i工厂建仓库的最小代价
{
int x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
}
inline double X(int i) {return sump[i];}
inline double Y(int i) {return f[i]+sum[i];}
inline double xie(int i,int j) {return (Y(i)-Y(j))/(X(i)-X(j));}
int main()
{
// freopen("1.in","r",stdin);
n=read();
for(int i=1;i<=n;++i) x[i]=read(),p[i]=read(),c[i]=read();
for(int i=1;i<=n;++i) sum[i]=sum[i-1]+x[i]*p[i],sump[i]=sump[i-1]+p[i];
for(int i=1;i<=n;++i) f[i]=INF;
f[0]=0;
for(int i=1;i<=n;++i)
{
while(l<r&&xie(q[l],q[l+1])<=x[i]) ++l;
int j=q[l];
f[i]=f[j]+(sump[i-1]-sump[j])*x[i]-(sum[i-1]-sum[j])+c[i];
while(l<r&&xie(i,q[r])<=xie(q[r],q[r-1])) --r;
q[++r]=i;
//for(int j=0;j<i;++j) f[i]=min(f[i],f[j]+(sump[i-1]-sump[j])*x[i]-(sum[i-1]-sum[j]));
//f[i]+=c[i];
}
printf("%lld",f[n]);
return 0;
}

P2120 [ZJOI2007]仓库建设的更多相关文章

  1. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  2. 洛谷 P2120 [ZJOI2007] 仓库建设

    链接: P2120 题意: 有 \(n\) 个点依次编号为 \(1\sim n\).给出这 \(n\) 个点的信息,包括位置 \(x_i\),所拥有的的物品数量 \(p_i\),在此建设一个仓库的费用 ...

  3. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  4. P2120 [ZJOI2007] 仓库建设(斜率优化DP)

    题意:\(1\sim N\) 号工厂,第\(i\) 个工厂有\(P_i\)个成品,第\(i\)个工厂建立仓库需要\(C_i\)的费用,该工厂距离第一个工厂的距离为\(X_i\),编号小的工厂只能往编号 ...

  5. P2120 [ZJOI2007]仓库建设(dp+斜率优化)

    思路 首先暴力DP显然,可以得20分 加上一个前缀和优化,可以得到40分 然后上斜率优化 设\(sum_i\)为\(\sum_{1}^iP_i\),\(sump_i\)为\(\sum_{1}^{i}P ...

  6. 【洛谷】2120:[ZJOI2007]仓库建设【斜率优化DP】

    P2120 [ZJOI2007]仓库建设 题目背景 小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题. 题目描述 L公司有N个工厂,由高到底分布在一座山上. 工 ...

  7. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  8. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  9. 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3940  Solved: 1736 Description ...

随机推荐

  1. 合并区间 leetcode

    描述: 给出一组区间,请合并所有重叠的区间. 请保证合并后的区间按区间起点升序排列. 输入: [[10,30],[20,60],[80,100],[150,180]] 输出: [[10,60],[80 ...

  2. 对Java的annotation(注解)的认识

    什么是java的annotation(注解) ? 注解的定义(annootation): public @interface TestAnnotation { } 上面的这种形式,便定义了注解是如何定 ...

  3. css3 animate转圈360旋转

    .logo{ width:20px; height: 20px; background: red; -webkit-animation:haha1 .8s linear infinite; anima ...

  4. Java基础系列(20)- while循环

    循环结构 while循环 do-循环 for循环 在java5中引入了一种主要用于数组的增强型for循环 while循环 while是最基本的循环,它的结构为 while(布尔表达式){ //循环内容 ...

  5. Jmeter扩展组件开发(3) - 实现方法

    继承JavaSamplerClient,四种实现方法讲解 前提 JavaSamplerClient要把四种实现方法都继承,编译器才不会报错. com.demo(package包)右键新建一个secon ...

  6. Linux系列(15) - man

    简介 查看命令帮助,是个帮助命令 格式 man [选项] 命令 选项 -f:相当于 whatis 命令,查询一个命令执行什么功能,这个命令是什么级别的,并将查询结果打印到终端 -k:相当于 aprop ...

  7. Shell系列(37)- while和until循环

    while循环 只要条件判断式成立则进行循环,并执行循环程序:一旦循环条件不成立,则终止循环 格式 while [ 条件判断式 ] do 程序 done 例子 需求:计算工具,1+2+--100的和 ...

  8. python学习笔记(十四)python实现发邮件

    import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart u ...

  9. SQL连接查询的执行顺序?

    sql和mysql执行顺序,发现内部机制是一样的.最大区别是在别名的引用上. 一.sql执行顺序 (1)from (2)on (3)join (4)where (5)group by(开始使用sele ...

  10. NetCore5实现https请求

    前言 本文主要介绍在NetCore5中,实现证书加载和https访问请求. 证书准备 首先我们先创建一个自定义的证书Kiba518.pfx. 证书创建参考:最通俗易懂的RSA加密解密指导. 然后将证书 ...