利用NVIDIA NGC的TensorRT容器优化和加速人工智能推理
利用NVIDIA NGC的TensorRT容器优化和加速人工智能推理
Optimizing and Accelerating AI Inference with the TensorRT Container from NVIDIA NGC
自然语言处理(NLP)是人工智能最具挑战性的任务之一,因为它需要理解上下文、语音和重音来将人类语音转换为文本。构建这个人工智能工作流首先要训练一个能够理解和处理口语到文本的模型。
BERT是这项任务的最佳模型之一。您不必从头开始构建像BERT这样的最先进的模型,而是可以针对您的特定用例微调经过预训练的BERT模型,并将其与NVIDIA Triton推理服务器配合使用。有两种基于BERT的模型可用:
BERT-Base有12层、12个注意头和1.1亿个参数的
BERT-large有24层,16个注意头,3.4亿个参数
这些模型中的许多参数都是稀疏的。大量的参数因此降低了推理的吞吐量。本文将使用BERT推理作为一个例子来展示如何利用nvidiangc的TensorRT容器,并通过您的AI模型提高推理的性能。
Prerequisites
This post uses the following resources:
- The TensorFlow container for GPU-accelerated training
- A system with up to eight NVIDIA GPUs, such as DGX-1
- Other NVIDIA GPUs can be used but the training time varies with the number and type of GPU.
- GPU-based instances are available on all major cloud service providers.
- NVIDIA Docker
- The latest CUDA driver
Get the assets from NGC
Before you can start the BERT optimization process, you must obtain a few assets from NGC:
- A fine-tuned BERT-large model
- Model scripts for running inference with the fine-tuned model, in TensorFlow
Fine-tuned BERT-Large model
If you followed our previous post, Jump-start AI Training with NGC Pretrained Models On-Premises and in the Cloud, you’ll see that we are using the same fine-tuned model for optimization.
If you didn’t get a chance to fine-tune your own model, make a directory and download the pretrained model files. You have several download options.
Option 1: Download from the command line using the following commands. In the terminal, use wget to download the fine-tuned model:
mkdir bert_model && cd bert_model
wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/bert_config.json
wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/model.ckpt-5474.data-00000-of-00001
wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/model.ckpt-5474.index
wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/model.ckpt-5474.meta
wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/vocab.txt
Option 2: Download from the NGC website.
- In your browser, navigate to the model repo page.
- In the top right corner, choose Download.
- After the zip file finishes downloading, unzip the files.
Refer to the directory where the fine-tuned model is saved as $MODEL_DIR. It can be the model that you saved from our previous post, or the model that you just downloaded.
When you are in this directory, export it:
export MODEL_DIR=$PWD
cd ..
Model scripts for running inference with the fine-tuned model
Use the following scripts to see the performance of BERT inference in TensorFlow format. To download the model scripts:
- In your browser, navigate to the model scripts page.
- At the top right, choose Download.
Figure 1. BERT inference model in TensorFlow from NGC.
Alternatively, the model script can be downloaded using git from the NVIDIA Deep Learning Examples on GitHub:
mkdir bert_tf && cd bert_tf
git clone https://github.com/NVIDIA/DeepLearningExamples.git
You are doing TensorFlow inference from the BERT directory. Whether you downloaded using the NGC webpage or GitHub, refer to this directory moving forward as $BERT_DIR.
Export this directory as follows:
export BERT_DIR=$PWD'/DeepLearningExamples/TensorFlow/LanguageModeling/BERT/'
cd ..
Before cloning the TensorRT GitHub repo, run the following command:
mkdir bert_trt && cd bert_trt
To get the script required for converting and running BERT TensorFlow model into TensorRT, follow the steps in Downloading the TensorRT Components. Make sure that the directory locations are correct:
- $MODEL_DIR—Location of the BERT model checkpoint files.
- $BERT_DIR—Location of the BERT TF scripts.
TensorFlow performance evaluation
In this section, you build, run, and evaluate the performance of BERT in TensorFlow.
Set up and run a Docker container
Build the Docker container by running the following command:
docker build $BERT_DIR -t bert
Launch the BERT container, with two mounted volumes:
- One volume for the BERT model scripts code repo, mounted to /workspace/bert.
- One volume for the fine-tuned model that you either fine-tuned yourself or downloaded from NGC, mounted to /finetuned-model-bert.
docker run --gpus all -it \
-v $BERT_DIR:/workspace/bert \
-v $MODEL_DIR:/finetuned-model-bert \
bert
Prepare the dataset
You are evaluating the BERT model using the SQuAD dataset. For more information, see SQuAD1.1: The Stanford Question Answering Dataset.
export BERT_PREP_WORKING_DIR="/workspace/bert/data"
python3 /workspace/bert/data/bertPrep.py --action download --dataset squad
if the line import PubMedTextFormatting gives any errors in the bertPrep.py script, comment this line out, as you don’t need the PubMed dataset in this example.
This script downloads two folders in $BERT_PREP_WORKING_DIR/download/squad/: v2.0/ and v1.1/. For this post, use v1.1/.
Run evaluations with the TensorFlow model
Inside the container, navigate to the BERT workspace that contains the model scripts:
cd /workspace/bert/
You can run inference with a fine-tuned model in TensorFlow using scripts/run_squad.sh. For more information, see Jump-start AI Training with NGC Pretrained Models On-Premises and in the Cloud.
There are two modifications to this script. First, set it to prediction-only mode:
- --do_train=False
- --do_predict=True
When you manually edit --do_train=False in run_squad.sh, the training-related parameters that you pass into run_squad.sh aren’t relevant in this scenario.
Second, comment out the following block starting at line number 27:
#if [ "$bert_model" = "large" ] ; then
# export BERT_DIR=data/download/google_pretrained_weights/uncased_L-24_H-1024_A-16
#else
# export BERT_DIR=data/download/google_pretrained_weights/uncased_L-12_H-768_A-12
#fi
Because you can get vocab.txt and bert_config.json from the mounted directory /finetuned-model-bert, you do not need this block of code.
Now, export BERT_DIR inside the container:
export BERT_DIR=/finetuned-model-bert
After making the modifications, issue the following command:
bash scripts/run_squad.sh 1 5e-6 fp16 true 1 384 128 large 1.1 /finetuned-model-bert/model.ckpt<-num>
Put the correct checkpoint number <-num> available:
INFO:tensorflow:Throughput Average (sentences/sec) = 106.56
We observed that inference speed is 106.56 sentences per second for running inference directly in TensorFlow on a system powered with a single NVIDIA T4 GPU. Performance may differ depending on the number of GPUs and the architecture of the GPUs.
This is good performance, but could it be better? Investigate by using the scripts in /workspace/bert/trt/ to convert the TF model into TensorRT 7.1, then run inference on the TensorRT BERT model engine. For that process, switch over to the TensorRT repo and build a Docker image to launch.
Issue the following command:
exit
TensorRT performance evaluation
In the following section, you build, run, and evaluate the performance of BERT in TensorFlow. Before proceeding, make sure that you have downloaded and set up the TensorRT GitHub repo.
Set up a Docker container
In this step, you build and launch the Docker image from Dockerfile for TensorRT.
On your host machine, navigate to the TensorRT directory:
cd TensorRT
The script docker/build.sh builds the TensorRT Docker container:
./docker/build.sh --file docker/ubuntu.Dockerfile --tag tensorrt-ubuntu --os 18.04 --cuda 11.0
After the container is built, you must launch it by executing the docker/launch.sh script. However, before launching the container, modify docker/launch.sh to add -v $MODEL_DIR:/finetuned-model-bert and -v $BERT_DIR/data/download/squad/v1.1:/data/squad in docker_args to pass in your fine-tuned model and squad dataset, respectively.
The docker_args at line 49 should look like the following code:
docker_args="$extra_args -v $MODEL_DIR:/finetuned-model-bert -v $BERT_DIR/data/download/squad/v1.1:/data/squad -v $arg_trtrelease:/tensorrt -v $arg_trtsource:/workspace/TensorRT -it $arg_imagename:latest"
Now build and launch the Docker image locally:
./docker/launch.sh --tag tensorrt-ubuntu --gpus all --release $TRT_RELEASE --source $TRT_SOURCE
When you are in the container, you must build the TensorRT plugins:
cd $TRT_SOURCE
export LD_LIBRARY_PATH=`pwd`/build/out:$LD_LIBRARY_PATH:/tensorrt/lib
mkdir -p build && cd build
cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out
make -j$(nproc)
pip3 install /tensorrt/python/tensorrt-7.1*-cp36-none-linux_x86_64.whl
Now you are ready to build the BERT TensorRT engine.
Build the TensorRT engine
Make a directory to store the TensorRT engine:
mkdir -p /workspace/TensorRT/engines
Optionally, explore /workspace/TensorRTdemo/BERT/scripts/download_model.sh to see how you can use the ngc registry model download-version command to download models from NGC.
Run the builder.py script, noting the following values:
- Path to the TensorFlow model /finetuned-model-bert/model.ckpt-<num>/li>
- Output path for the engine to be built
- Batch size 1
- Sequence length 384
- Precision fp16
- Checkpoint path /finetuned-model-bert
cd /workspace/TensorRT/demo/BERT
python3 builder.py -m /finetuned-model-bert/model.ckpt-5474 -o /workspace/TensorRT/engines/bert_large_384.engine -b 1 -s 384 --fp16 -c /finetuned-model-bert/
Make sure that you provide the correct checkpoint model. The script takes ~1-2 mins to build the TensorRT engine.
Run the TensorRT inference
Now run the built TensorRT inference engine on 2K samples from the SQADv1.1 evaluation dataset. To run and get the throughput numbers, replace the code from line number 222 to line number 228 in inference.py, as shown in the following code block.
Be mindful of indentation. If the prompt asks for a password while you are installing vim in the container, use the password nvidia.
if squad_examples:
eval_time_l = []
all_predictions = collections.OrderedDict()
for example_index, example in enumerate(squad_examples):
print("Processing example {} of {}".format(example_index+1, len(squad_examples)), end="\r")
features = question_features(example.doc_tokens, example.question_text)
eval_time_elapsed, prediction, nbest_json = inference(features, example.doc_tokens)
eval_time_l.append(1.0/eval_time_elapsed)
all_predictions[example.id] = prediction
if example_index+1 == 2000:
break
print("Throughput Average (sentences/sec) = ",np.mean(eval_time_l))
Now run the inference:
CUDA_VISIBLE_DEVICES=0 python3 inference.py -e /workspace/TensorRT/engines/bert_large_384.engine -b
1 -s 384 -sq /data/squad/dev-v1.1.json -v /finetuned-model-bert/vocab.txt
Throughput Average (sentences/sec) = 136.59
We observed that inference speed is 136.59 sentences per second for running inference with TensorRT 7.1 on a system powered with a single NVIDIA T4 GPU. Performance may differ depending on the number of GPUs and the architecture of the GPUs, where the data is stored and other factors. However, you’ll always observe a performance boost due to model optimization using TensorRT.
Figure shows that the TensorRT BERT engine gives an average throughput of 136.59 sentences/sec compared to 106.56 sentences/sec given by the BERT model in TensorFlow. This is a 28% boost in throughput.
Figure 2. Performance gained when running BERT in TensorRT over TensorFlow.
Summary
Pull the TensorRT container from NGC to easily and quickly performance tune your models in all major frameworks, create novel low-latency inference applications, and deliver the best quality of service (QoS) to customers.
利用NVIDIA NGC的TensorRT容器优化和加速人工智能推理的更多相关文章
- Amazon SageMaker和NVIDIA NGC加速AI和ML工作流
Amazon SageMaker和NVIDIA NGC加速AI和ML工作流 从自动驾驶汽车到药物发现,人工智能正成为主流,并迅速渗透到每个行业.但是,开发和部署AI应用程序是一项具有挑战性的工作.该过 ...
- 如何运行具有奇点的NGC深度学习容器
如何运行具有奇点的NGC深度学习容器 How to Run NGC Deep Learning Containers with Singularity 高性能计算机和人工智能的融合使新的科学突破成为可 ...
- 利用NVIDIA-NGC中的MATLAB容器加速语义分割
利用NVIDIA-NGC中的MATLAB容器加速语义分割 Speeding Up Semantic Segmentation Using MATLAB Container from NVIDIA NG ...
- http应用优化和加速说明-负载均衡
负载均衡技术 现代企业信息化应用越来越多的采用B/S应用架构来承载企业的关键业务,因此,确保这些任务的可靠运行就变得日益重要.随着越来越多的企业实施数据集中,应用的扩展性.安全性和可靠性也 ...
- Flex利用titleIcon属性给Panel容器标题部添加一个ICON图标
Flex利用titleIcon属性,给Panel容器标题部添加一个ICON图标. 让我们先来看一下Demo(可以右键View Source或点击这里察看源代码): 下面是完整代码(或点击这里察看): ...
- 如何利用Nginx的缓冲、缓存优化提升性能
使用缓冲释放后端服务器 反向代理的一个问题是代理大量用户时会增加服务器进程的性能冲击影响.在大多数情况下,可以很大程度上能通过利用Nginx的缓冲和缓存功能减轻. 当代理到另一台服务器,两个不同的连接 ...
- 利用text插件和css插件优化web应用
JavaScript的模块化开发到如今,已经相当成熟了,当然,一个应用包含的不仅仅有js,还有html模板和css文件. 那么,如何将html和css也一起打包,来减少没必要的HTTP请求数呢? 本文 ...
- Spring:利用PerformanceMonitorInterceptor来协助应用性能优化
前段时间对公司产品做性能优化,如果单依赖于测试,进度就会很慢.所以就通过对代码的方式来完成,并以此来加快项目进度.具体的执行方案自然就是要知道各个业务执行时间,针对业务来进行优化. 因为项目中使用了S ...
- 利用getBoundingClientRect()来实现div容器滚动固定
ele.getBoundingClientRect()的方法是可以获得一个元素在整个视图窗口的位置 可以return的值有width,height,top,left,x,y,right,bottom ...
随机推荐
- LA3602DNA序列
题意: 给你一个一些DNA序列(只有ACGT)然后让你构造一个序列,使得所有的序列到他的Hamming距离最小,所有的序列包括构造的序列长度都是N,Hamming表示两个序列的不同字符位置个 ...
- POJ3114强连通+spfa
题意: 给你n个点,m条有向边,q询问,每次询问给两个数a,b输出a->b的最短路,但是题目有个限制,就是在一个环上的任意两点距离为0. 思路: 简单题目,直接强连通压缩 ...
- node-util
Node.js 常用工具 util 是一个Node.js 核心模块,提供常用函数的集合,用于弥补核心JavaScript 的功能 过于精简的不足. util.inherits util.inherit ...
- 前端不得不了解的TCP协议
背景 早期的网络是基于OSI(开放式系统互联网,一般叫OSI参考模型)模型,该模型是由ISO国际标准组织制定的,包含了七层(应用层.表示层.会话层.传输层.网络层.数据链路层.物理层),即复杂又不实用 ...
- HDU - 3347 Calculate the expression — 模拟 + map存变量
传送门 题意:从输入开始,1.输入样例数:2.然后输入一组样例中的行数n:3.前n-1行为定义变量(之间使用空格隔开),只需要map存进去就可以了(这里有覆盖的情况,故使用mp["s&quo ...
- base64stego 还不懂base64的隐写,详解15行代码带你领略
网上写了好多关于xctf MISC新手篇的base64Stego隐写的教程,但大都不太清楚,基本上都是讲了一段隐写原理,直接上代码了.但是代码是这道题的关键,代码讲了如何解码这个隐写的完整流程,这次我 ...
- Canal详细入门实战(使用总结)
Canal介绍 Canal简介 canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费 早期阿里巴巴因为杭州和美国双机房部署,存在 ...
- spring为何要注入接口,而注入接口的实现类就会报错
首先说明,注入的对象确实为实现类的对象.(并不是实现类的代理对象,注入并不涉及代理) 如果只是单纯注入是可以用实现类接收注入对象的,但是往往开发中会对实现类做增强,如事务,日志等,实现增强的AOP技术 ...
- vscode 取消 eslint everywhere
vscode装了eslint插件,一不小心点了eslint everywhere 然后任务栏就变成这样了 eslint前面是双钩 不管你打开什么项目,什么工作空间,永远都是默认开启ESlint!!! ...
- 把el-element的日期格式改为CRON
在日常的开发当中,经常会遇到格式的不匹配造成的困扰. 在日期管理上,el-element也是贴心的准备了相关的日期选择器,但是在取值的时候发现,el-element所给出的值格式可能并不是我们常用的. ...