TensorFlow神经网络集成方案

创造张力流create_tensorflow_neuropod

将TensorFlow模型打包为neuropod包。

create_tensorflow_neuropod(

neuropod_path,

model_name,

node_name_mapping,

input_spec,

output_spec,

frozen_graph_path = None,

graph_def = None,

init_op_names = [],

input_tensor_device = None,

default_input_tensor_device = GPU,

custom_ops = [],

package_as_zip = True,

test_input_data = None,

test_expected_out = None,

persist_test_data = True,

)

参数:

路径

输出路径

型号名称

模型的名称

节点名称映射

从neuropod输入/输出名称映射到图形中的节点。0是可选的。

Example:

{

"x": "some_namespace/in_x:0",

"y": "some_namespace/in_y:0",

"out": "some_namespace/out:0",

}

输入规格input_spec

指定模型输入的dict列表。对于每个输入,如果shape设置为None,则不对该形状进行验证。如果shape是元组,则根据该元组验证输入的维度。任何维度的值为“无”表示将不检查该维度。数据类型可以是任何有效的numpy数据类型字符串。

Example:

[
{"name": "x", "dtype": "float32", "shape": (None,)},
    {"name": "y", "dtype": "float32", "shape": (None,)},
]

输出规格output_spec

指定模型输出的dict列表。有关详细信息,请参阅input_spec参数的文档。

Example:

[
{"name": "out", "dtype": "float32", "shape": (None,)},
]

frozen_graph_path

default: None

冻结张量流图的路径。如果未提供此选项,则必须设置图形定义graph_def

graph_def

default: None

tensorflow GraphDef对象。

如果未提供,则必须设置frozen_graph_path路径。

init_op_names

default: []

初始化运算符名称的列表。这些操作在会话创建后立即在用于推理的会话中求值。这些运算符可用于变量的初始化。

input_tensor_device

default: None

dict将输入张量名称映射到模型希望它们在其上的设备。这可以是GPU或CPU。此映射中未指定的输入规格中的任何张量都将使用下面指定的默认输入张量设备。

如果在推断时选择了GPU,则在运行模型之前,神经网络集成软件会将张量移动到适当的设备。否则,它将尝试在CPU上运行模型,并将所有张量(和模型)移到CPU上。

有关更多信息,请参阅load_neurood的文档字符串。

Example:

{"x": "GPU"}

default_input_tensor_device

default: GPU

输入张量的默认设备应该打开。这可以是GPU或CPU。

custom_ops

default: []

要包含在打包的neuropod中的自定义op共享库的路径列表。

注意:包括定制操作将您的neuropod绑定到定制操作为之构建的特定平台(如Mac、Linux)。用户有责任确保为正确的平台构建自定义操作。

Example:

["/path/to/my/custom_op.so"]

package_as_zip

default: True

是将neuropod打包为一个文件还是一个目录。

test_input_data

default: None

可选样本输入数据。

这是一个将输入名称映射到值的dict。如果提供了这一点,则在包装后立即在隔离环境中运行推断,以确保成功创建了神经网络集成软件。如果提供了预期的测试,则必须提供。

如果推断失败,则引发ValueError。

Example:

{
    "x": np.arange(5),
    "y": np.arange(5),
}

test_expected_out

default: None

可选的预期输出。如果模型推断的输出与预期的输出不匹配,则引发ValueError。

Example:

{
    "out": np.arange(5) + np.arange(5)
}

persist_test_data

default: True

可选地将测试数据保存在包装好的神经网络集成软件内。

TensorFlow神经网络集成方案的更多相关文章

  1. 大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app

    大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app ( 本文内容为melodyWxy原作,git地址:https://github.com/melodyWx ...

  2. Python神经网络集成技术Guide指南

    Python神经网络集成技术Guide指南 本指南将介绍如何加载一个神经网络集成系统并从Python运行推断. 提示 所有框架的神经网络集成系统运行时接口都是相同的,因此本指南适用于所有受支持框架(包 ...

  3. Keras神经网络集成技术

    Keras神经网络集成技术 create_keras_neuropod 将Keras模型打包为神经网络集成包.目前,上文已经支持TensorFlow后端. create_keras_neuropod( ...

  4. neurosolutions 人工神经网络集成开发环境 keras

    人工神经网络集成开发环境 :  http://www.neurosolutions.com/ keras:   https://github.com/fchollet/keras 文档    http ...

  5. Spring+Struts集成(方案一)

    SSH框架是现在非常流行的框架之一,本文接下来主要来对Spring和Struts的集成进行展示. 集成原理:在Action中取得BeanFactory,通过BeanFactory取得业务逻辑对象. 集 ...

  6. SSO集成方案[随笔]

    看这个方案之前,先说明下为什么要加入SSO,以防对大家产生不好的影响.我们产品使用传统winform+db服务+Db存储方式开发,一群老菜帮子开发,以传统的datatble做数据传递,很多年了未有变化 ...

  7. Jmeter+Ant+Jenkins持续集成方案改进

    关于Jmeter+Ant+Jenkins如何搭建持续集成环境,网上资料一大把,就不多说了,本文主要谈一下期间的问题及扩展该持续集成方案. 其实核心的流程不复杂,Jenkins管理构建项目,Ant配置脚 ...

  8. FineReport和泛微OA(Ecology)的单点登录集成方案

    最近出现了很多关于帆软报表和泛微OA的集成问题,均出现在“单点登录”上.直接也有相关的文章介绍一些FineReport和泛微集成的背景.价值等,以及FineReport和OA的深度集成的方案,但是并没 ...

  9. (转)Spring4.2.5+Hibernate4.3.11+Struts1.3.8集成方案二

    http://blog.csdn.net/yerenyuan_pku/article/details/52894958 前面我们已经集成了Spring4.2.5+Hibernate4.3.11+Str ...

随机推荐

  1. hdu1824 基础2sat

    题意: Let's go home Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  2. POJ3498最大流,枚举终点,企鹅,基础最大流

    题意:       有一n个冰块,每个冰块上都有一些企鹅,所有的企鹅要跳到一个冰块上去,但是由于起跳是的后坐力原因导致每个冰块最多条mi次,最后问你所有的企鹅都跳到一个冰块上去的那块冰块可以是哪一块, ...

  3. Linux提权

    讲Linux提权之前,我们先看看与Linux有关的一些知识: 我们常说的Linux系统,指的是Linux内核与各种常用软件的集合产品,全球大约有数百款的Linux系统版本,每个系统版本都有自己的特性和 ...

  4. Windows Pe 第三章 PE头文件(下)

    3.5  数据结构字段详解 3.5.1  PE头IMAGE_NT_HEADER的字段 1.IMAGE_NT_HEADER.Signature +0000h,双字.PE文件标识,被定义为00004550 ...

  5. Intel汇编语言程序设计学习-第六章 条件处理-下

    6.6  应用:有限状态机 这个东西说了半天,感觉就是把逻辑弄得跟有向图一样,没看出来什么高端的东西,下面就整理下书上说的概念: 有限状态机(FSM,Finite-State Machine)是依据输 ...

  6. 使用 Azure Container Registry 储存镜像

    Azure Container Registry(容器注册表)是基于 Docker Registry 2.0规范的托管专用 Docker 注册表服务. 可以创建和维护 Azure 容器注册表来存储与管 ...

  7. git修改远端仓库地址

    git remote set-url origin 远端地址

  8. linux集群压测部署方案

    我们今天主要分享的内容从三方面讲解. 集群压力机部署 shell脚本简介 shell脚本搞定压力机部署 集群压力机部署   linux.png 分布式压测背景介绍 在企业项目实战时,如果被压的服务器处 ...

  9. vue2.0与3.0响应式原理机制

    vue2.0响应式原理 - defineProperty 这个原理老生常谈了,就是拦截对象,给对象的属性增加set 和 get方法,因为核心是defineProperty所以还需要对数组的方法进行拦截 ...

  10. golang:三次握手四次挥手总结

    TCP的三次握手 所谓三次握手 Three-Way Handshake 是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立.好比两个人在打电话: 当连接被建立或被终止,交换的报 ...