Overview

1.PyTorch简介

​ PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络。

2.与TensorFlow区别

​ pytorch是一个动态的框架,而TensorFlow是静态框架(2.x版本也为动态框架优先)。静态框架就是指我们首先构建一个计算图,构建完成之后这个图就不再变化,通过给变量赋值来进行计算,这样势必导致我们需要修改逻辑的时候相对比较复杂,而动态图修改计算逻辑相对比较简单。简单举例如下,例如假设我们需要实现如下计算图:

TF代码:

import numpy as np
import tensorflow as tf
np.random.seed(0)
raw,col=3,4
x=tf.placeholder(tf.float32)
y=tf.placeholder(tf.float32)
z=tf.placeholder(tf.float32)
a=x*y
b=a+z
c=tf.reduce_sum(b)
grad_x,grad_y,grad_z=tf.gradients(c,[x,y,z])
with tf.Session()as sess:
values={
x:np.random.randn(raw,col),
y: np.random.randn(raw, col),
z: np.random.randn(raw, col)
}
out=sess.run([c,grad_x,grad_y,grad_z],
feed_dict=values)
c_val,grad_x_val,grad_y_val,grad_z_val=out
print(c_val,grad_x_val,grad_y_val,grad_z_val)

PyTorch代码:

import torch
from torch.autograd import Variable
raw,col=3,4
x=Variable(torch.randn(raw,col),requires_grad=True)
y=Variable(torch.randn(raw,col),requires_grad=True)
z=Variable(torch.randn(raw,col),requires_grad=True)
a=x*y
b=a+z
c=torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.data)

​ 可以发现二者都包含了建立前向计算等过程,但是相对来说PyTorch代码比较简短一些,相对也比较灵活一些。

3.PyTorch安装

网上相关教程很多,不再赘述,附其中一个教程:

安装PyTorch详细过程_MCYZSF的博客-CSDN博客_pytorch安装

PyTorch深度学习实践-Overview的更多相关文章

  1. PyTorch深度学习实践——反向传播

    反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性 ...

  2. PyTorch深度学习实践——多分类问题

    多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩 ...

  3. PyTorch深度学习实践——处理多维特征的输入

    处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集 ...

  4. 深度学习实践系列(2)- 搭建notMNIST的深度神经网络

    如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) ...

  5. 深度学习实践系列(3)- 使用Keras搭建notMNIST的神经网络

    前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度 ...

  6. 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码

    PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...

  7. 【PyTorch深度学习60分钟快速入门 】Part1:PyTorch是什么?

      0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性 ...

  8. 【PyTorch深度学习】学习笔记之PyTorch与深度学习

    第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...

  9. PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程

    什么是 PyTorch? PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群: NumPy 的替代品,可以利用 GPU 的性能进行计算. 深度学习研究平台拥有足够的灵活性和速度 ...

随机推荐

  1. python -m详解

    温馨提示: 本篇演示环境是Python 3.8 先python --help看下python -m参数的解释: -m mod : run library module as a script (ter ...

  2. Arrays.sort(arr)是什么排序

    在学习过程中观察到Arrays.sort(arr)算法可以直接进行排序,但不清楚底层的代码逻辑是什么样子,记得自己之前在面试题里面也有面试官问这个问题,只能说研究之后发现还是比较复杂的,并不是网上说的 ...

  3. WTM多租户改造

    首先简单说下多租户的几种实现方式 多租户(Multi-Tenant ),即多个租户共用一个实例,租户的数据既有隔离又有共享,说到底是要解决数据存储的问题. 常用的数据存储方式有三种. 方案一:独立数据 ...

  4. eureka的简单介绍,eureka单节点版的实现?eureka的自我保护?eureka的AP性,和CP性?

    注意!!! 这是对上一篇博客 springcloud的延续,整个项目的搭建,来源与上一篇博客.一.什么是eureka? // eureka是一个注册中心,实现了dubbo中zookeeper的效果! ...

  5. 「NOI十联测」深邃

    「NOI十联测」深邃 要使得最大的连通块最小,显然先二分答案. 先固定1结点为根. 对于一个果实,显然是先处理子树中未分配的点,再向外延伸. 每个结点记录一个\(si[]\),表示子树中未分配的点数, ...

  6. php curl发送post get请求

    POST: function curl_post_https($url, $data, $header){ // 模拟提交数据函数 $curl = curl_init(); // 启动一个CURL会话 ...

  7. docker构建镜像 (3)

    使用Dockerfile构建镜像 Dockerfile使用DSL(Domain Specific Language)来构建一个Docker镜像,只要编辑好了Dockerfile文件,就可以使用dock ...

  8. SharedPreferences介绍

    sharedPreferences是通过xml文件来做数据存储的.         一般用来存放一些标记性的数据,一些设置信息.        使用sharedPreferences存储数据      ...

  9. JAVA变量的数据类型

    1. 整型 byte   代表一个字节的大小   8bit  2(8)   -128~127        256 short  代表两个字节的大小  16bit  2(16)  -2(15)~2(1 ...

  10. 动态修改UINavigationBar的背景色--by-胡旭

    这是我们最终想要得到的效果 思路 在UISrollView的delegate方法 - (void)scrollViewDidScroll:(UIScrollView *)scrollView中根据当前 ...