题解 Division Game
Description
懒得写了。
Solution
设 \(f(x)\) 表示对于一个位置操作了 \(x\) 次后刚好变为 \(1\) 的方案数,可以看出的是 \(f(x)\) 同样也是对于一个位置在操作了 \(x-1\) 次后仍没有变为 \(1\) 的方案数。
可以想到的是,第 \(i\) 个位置结束的方案数就是:
\]
考虑如何求 \(f(x)\) ,可以想到 \(f(x)\) 对应的是:有 \(m\) 种球,每种有 \(e_i\) 个,分到 \(x\) 个盒子中,不允许有盒子空着的方案数。设 \(g(x)=\prod_{i=1}^{m} \binom{e_i+x-1}{x-1}\),那么我们就可以容斥得到 \(f(x)\):
\]
直接卷就好了。
Code
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 985661441
#define MAXN 1000005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> inline void chkmax (T &a,T b){a = max (a,b);}
template <typename T> inline void chkmin (T &a,T b){a = min (a,b);}
int up = 400000,fac[MAXN],ifac[MAXN];
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
return res;
}
void Sub (int &a,int b){a = dec (a,b);}
void Add (int &a,int b){a = add (a,b);}
int binom (int a,int b){return a >= b ? mul (fac[a],mul (ifac[b],ifac[a - b])) : 0;}
#define SZ(A) ((A).size())
typedef vector<int> poly;
int w[MAXN],rev[MAXN];
void init_ntt(){
int lim = 1 << 18;
for (Int i = 0;i < lim;++ i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << 17);
int Wn = qkpow (3,(mod - 1) / lim);w[lim >> 1] = 1;
for (Int i = lim / 2 + 1;i < lim;++ i) w[i] = mul (w[i - 1],Wn);
for (Int i = lim / 2 - 1;~i;-- i) w[i] = w[i << 1];
}
void ntt (poly &a,int type){
#define G 3
#define Gi 328553814
static int d[MAXN];int lim = a.size();
for (Int i = 0,z = 18 - __builtin_ctz(lim);i < lim;++ i) d[rev[i] >> z] = a[i];
for (Int i = 1;i < lim;i <<= 1)
for (Int j = 0;j < lim;j += i << 1)
for (Int k = 0;k < i;++ k){
int x = mul (w[i + k],d[i + j + k]);
d[i + j + k] = dec (d[j + k],x),d[j + k] = add (d[j + k],x);
}
for (Int i = 0;i < lim;++ i) a[i] = d[i] % mod;
if (type == -1){
reverse (a.begin() + 1,a.begin() + lim);
for (Int i = 0,Inv = qkpow (lim,mod - 2);i < lim;++ i) a[i] = mul (a[i],Inv);
}
#undef G
#undef Gi
}
poly operator * (poly A,poly B){
int lim = 1,l = 0,len = SZ(A) + SZ(B) - 1;
while (lim < SZ(A) + SZ(B)) lim <<= 1,++ l;
A.resize (lim),B.resize (lim),ntt (A,1),ntt (B,1);
for (Int i = 0;i < lim;++ i) A[i] = mul (A[i],B[i]);
ntt (A,-1),A.resize (len);
return A;
}
poly operator * (poly a,int b){
for (Int i = 0;i < SZ(a);++ i) a[i] = mul (a[i],b);
return a;
}
poly operator + (poly a,poly b){
int len = max (SZ(a),SZ(b));
a.resize (len),b.resize (len);
for (Int i = 0;i < len;++ i) Add (a[i],b[i]);
return a;
}
poly operator - (poly a,poly b){
int len = max (SZ(a),SZ(b));
a.resize (len),b.resize (len);
for (Int i = 0;i < len;++ i) Sub (a[i],b[i]);
return a;
}
poly operator + (poly a,int b){
Add (a[0],b);
return a;
}
poly operator - (poly a,int b){
Sub (a[0],b);
return a;
}
poly f;
poly inv (poly &A,int n){
if (n == 1) return poly (1,qkpow (A[0],mod - 2));
poly Now,G0 = inv (A,(n + 1) >> 1);Now.resize (n);
for (Int i = 0;i < n;++ i)
if (i < SZ(A)) Now[i] = A[i];
else Now[i] = 0;
poly res = G0 * 2 - G0 * Now * G0;res.resize (n);
return res;
}
poly inv (poly A){return inv (A,SZ(A));}
poly der (poly A){
for (Int i = 1;i < SZ(A);++ i) A[i - 1] = mul (A[i],i);
A.pop_back ();
return A;
}
int getinv (int x){return mul (ifac[x],fac[x - 1]);}
poly inter (poly A){
A.push_back (0);
for (Int i = SZ(A) - 2;~i;-- i) A[i + 1] = mul (A[i],getinv (i + 1));
A[0] = 0;
return A;
}
poly ln (poly a,int n){
poly res = inter (inv (a,n) * der (a));
res.resize (n);
return res;
}
poly ln (poly a){return ln (a,SZ(a));}
void putout (poly a){
cout << SZ(a) << ": ";for (Int i = 0;i < SZ(a);++ i) cout << a[i] << " ";cout << endl;
}
poly exp (poly &a,int n){
if (n == 1) return poly (1,1);
poly Now,G0 = exp (a,(n + 1) >> 1);Now.resize (n);
for (Int i = 0;i < n;++ i) Now[i] = a[i];
poly res = G0 - G0 * (ln(G0,n) - Now);res.resize (n);
return res;
}
poly exp (poly a){return exp (a,SZ(a));}
int n,m,k,e[MAXN],p[MAXN];
void Work (){
n = 1;
for (Int i = 1;i <= m;++ i) read (p[i],e[i]),n += e[i];
poly F,G;F.resize (n + 1),G.resize (n + 1);
for (Int i = 1;i <= n;++ i){
int tmp = 1;
for (Int k = 1;k <= m;++ k) tmp = mul (tmp,binom (e[k] + i - 1,i - 1));
G[i] = mul (ifac[i],tmp);
}
for (Int i = 0;i <= n;++ i) F[i] = mul (ifac[i],i & 1 ? mod - 1 : 1);
// for (Int i = 0;i < SZ(F);++ i) cout << mul (fac[i],F[i]) << " ";cout << endl;
// for (Int i = 0;i < SZ(G);++ i) cout << mul (fac[i],G[i]) << " ";cout << endl;
F = F * G;
for (Int i = 0;i < SZ(F);++ i) F[i] = mul (F[i],fac[i]);
// for (Int i = 0;i < SZ(F);++ i) cout << F[i] << " ";cout << endl;
// cout << n << endl;
for (Int i = 1;i <= k;++ i){
int res = 0;
for (Int h = 0;h < n;++ h)
// cout << i << " , " << h << ": " << mul (qkpow (F[h + 1],i - 1),qkpow (F[h],k - i + 1)) << endl,
Add (res,mul (qkpow (F[h + 1],i - 1),qkpow (F[h],k - i + 1)));
write (res),putchar (' ');
}
putchar ('\n');
}
signed main(){
init_ntt ();
fac[0] = 1;for (Int i = 1;i <= up;++ i) fac[i] = mul (fac[i - 1],i);
ifac[up] = qkpow (fac[up],mod - 2);for (Int i = up;i;-- i) ifac[i - 1] = mul (ifac[i],i);
int tot = 0;while (~scanf ("%d%d",&m,&k)) printf ("Case #%d: ",++ tot),Work ();
return 0;
}
题解 Division Game的更多相关文章
- 【题解】HDU5845 Best Division (trie树)
[题解]HDU5845 Best Division (trie树) 题意:给定你一个序列(三个参数来根),然后请你划分子段.在每段子段长度小于等于\(L\)且子段的异或和\(\le x\)的情况下最大 ...
- Large Division(大数)题解
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- HDU3480:Division——题解
http://acm.hdu.edu.cn/showproblem.php?pid=3480 将一列数划分成几个集合,这些集合的并集为该数列,求每个数列的(最大值-最小值)^2的和的最小值. 简单的d ...
- December Challenge 2019 Division 1 题解
传送门 当我打开比赛界面的时候所有题目都已经被一血了-- BINXOR 直接把异或之后二进制最多和最少能有多少个\(1\)算出来,在这个范围内枚举,组合数算一下就行了.注意\(1\)的个数是\(2\) ...
- CodeChef November Challenge 2019 Division 1题解
传送门 AFO前的最后一场CC了--好好打吧-- \(SIMGAM\) 偶数行的必定两人平分,所以只要抢奇数行中间那个就行了 这题怎么被爆破了 //quming #include<bits/st ...
- Codechef July Challenge 2019 Division 1题解
题面 \(CIRMERGE\) 破环成链搞个裸的区间\(dp\)就行了 //quming #include<bits/stdc++.h> #define R register #defin ...
- CF1444A (1445C)Division 题解
题意:求最大的正整数 \(x\) ,使 \(x \mid p且q \nmid x\) . 首先,当 \(q \nmid p\) ,显然取 \(x=p\) 是最优解. 现在,我们考虑 \(q \mid ...
- Social Infrastructure Information Systems Division, Hitachi Programming Contest 2020 D题题解
将题意转换为一开始\(t = 0\),第\(i\)个操作是令\(t \leftarrow (a_i + 1) t + (a_i + b_i + 1)\).记\(A_i = a_i + 1, B_i = ...
- Social Infrastructure Information Systems Division, Hitachi Programming Contest 2020 C题题解
首先,我们将题目理解成若\(i\)与\(j\)距离恰好为\(3\),则不可能\(p_i \equiv p_j \equiv 1 \space or \space 2 (\bmod 3)\).这就相当于 ...
随机推荐
- Go版本管理--go.sum
目录 1. 简介 2. go.sum文件记录 3. 生成 4.校验 5.校验和数据库 1. 简介 为了确保一致性构建,Go引入了go.mod文件来标记每个依赖包的版本,在构建过程中go命令会下载go. ...
- promise例题
let promise = new Promise(resolve => { console.log('Promise'); resolve(); }); promise.then(functi ...
- SSE图像算法优化系列三十一:Base64编码和解码算法的指令集优化。
一.基础原理 Base64是一种用64个Ascii字符来表示任意二进制数据的方法.主要用于将不可打印的字符转换成可打印字符,或者简单的说是将二进制数据编码成Ascii字符.Base64也是网络 ...
- Python之requests模块-request api
requests所有功能都能通过"requests/api.py"中的方法访问.它们分别是: requests.request(method, url, **kwargs) req ...
- Linux查看英伟达GPU信息
命令: nvidia-smi 结果:
- GoLang设计模式04 - 单例模式
单例模式恐怕是最为人熟知的一种设计模式了.它同样也是创建型模式的一种.当某个struct只允许有一个实例的时候,我们会用到这种设计模式.这个struct的唯一的实例被称为单例对象.下面是需要创建单例对 ...
- docker一分钟搭建nginx服务器
运行nginx服务 拉取: docker pull nginx:1.17.9 运行: docker run -d --name nginx -P 80:80 nginx:1.17.9 -d表示在后台启 ...
- docker&flask快速构建服务接口(二)
系列其他内容 docker快速创建轻量级的可移植的容器✓ docker&flask快速构建服务接口✓ docker&uwsgi高性能WSGI服务器生产部署必备 docker&g ...
- PreparedStatement预编译的sql执行对象
一.预编译,防sql注入 其中,设置参数值占位符索引从1开始:在由sql 连接对象创建 sql执行对象时候传入参数sql语句,在执行对象在执行方法时候就不用再传入sql语句: 数据库索引一般是从1开始 ...
- 远程线程注入DLL突破session 0 隔离
远程线程注入DLL突破session 0 隔离 0x00 前言 补充上篇的远程线程注入,突破系统SESSION 0 隔离,向系统服务进程中注入DLL. 0x01 介绍 通过CreateRemoteTh ...