Ehab and Path-etic MEXs

题意:给定一棵树所有的边,对所有的边进行标号,询问任意两点Mex的最大值最小的的标号方案(输出任何一种)。

Mex(u,v)表示从u到v的简单路径中没有出现的最小标号。

思路:(借鉴大佬的)

如果树是一条链,那么任何标号方案对首尾两端的  都不会影响,直接输出  到 即可;

其余情况可以证明  最大值的最小值一定为  :

(1)无论如何安排,标  边和标  边一定存在公共路径联通;

(2)对于非链的树一定存在  ,  的安排方式使得存在边不在, 的任何公共路径上。在该边上标  即可满足不存在的公共路径。

有两种比较简洁的实现方式:

(1)找到三个度为  的点,选取这三个点的临边,标为,其余任意;

(2)找到一个度大于等于  的点,选取它的三个临边。

#include<bits/stdc++.h>
const int maxn= 1e5+100;
using namespace std;
int a[maxn],b[maxn],num[maxn];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&a[i],&b[i]);
num[a[i]]++;num[b[i]]++;
}
int op = 0;
for(int i=1;i<=n;i++) if(num[i]>=3) {op = i; break;}
if(!op) for(int i=0;i<n-1;i++) printf("%d\n",i);
else
{
for(int i=1,cnt1=0,cnt2=3;i<n;i++)
{
if((a[i]==op || b[i]==op) && cnt1<=2) printf("%d\n",cnt1++);
else printf("%d\n",cnt2++);
}
}
return 0;
}

vj-E题Ehab and Path-etic MEXs的更多相关文章

  1. 欧拉工程第67题:Maximum path sum II

    By starting at the top of the triangle below and moving to adjacent numbers on the row below, the ma ...

  2. PAT甲题题解-1053. Path of Equal Weight (30)-dfs

    由于最后输出的路径排序是降序输出,相当于dfs的时候应该先遍历w最大的子节点. 链式前向星的遍历是从最后add的子节点开始,最后添加的应该是w最大的子节点, 因此建树的时候先对child按w从小到大排 ...

  3. 刷题64. Minimum Path Sum

    一.题目说明 题目64. Minimum Path Sum,给一个m*n矩阵,每个元素的值非负,计算从左上角到右下角的最小路径和.难度是Medium! 二.我的解答 乍一看,这个是计算最短路径的,迪杰 ...

  4. lintcode 中等题:Simplify Path 简化路径

    题目 简化路径 给定一个文档(Unix-style)的完全路径,请进行路径简化. 样例 "/home/", => "/home" "/a/./b ...

  5. LeetCode算法题-Longest Univalue Path(Java实现)

    这是悦乐书的第290次更新,第308篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第158题(顺位题号是687).给定二叉树,找到路径中每个节点具有相同值的最长路径的长度 ...

  6. 【LeetCode每天一题】Simplify Path(简化路径)

    Given an absolute path for a file (Unix-style), simplify it. Or in other words, convert it to the ca ...

  7. 【LeetCode每天一题】Minimum Path Sum(最短路径和)

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  8. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  9. 第34-3题:LeetCode437. Path Sum III

    题目 二叉树不超过1000个节点,且节点数值范围是 [-1000000,1000000] 的整数. 示例: root = [10,5,-3,3,2,null,11,3,-2,null,1], sum ...

随机推荐

  1. MySQL高可用主从复制简介

    原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 简介 1.1 概述 二 技术原理 2.1 支持的复制类型 2.2 技术特点 2 ...

  2. linux centos7 获取开机时间

    2021-08-03 1. who 命令 who 命令显示关于当前在本地系统上的所有用户信息:登录名,线路,时间,备注 # 列出当前登录本系统的用户 who # 列出本系统的开机/重启时间 who - ...

  3. android http get

    Executors.newSingleThreadExecutor().execute{ val uri = "https://www.cnblogs.com/hangj" val ...

  4. 【SpringMVC】HttpMessageConverter报文信息转换器

    HttpMessageConverter HttpMessageConverter,报文信息转换器,将请求报文转换为Java对象,或将Java对象转换为响应报文 HttpMessageConverte ...

  5. 哲学家就餐问题-Java语言实现死锁避免

    哲学家就餐问题-Java语言实现死锁避免 我死锁预防是至少破坏死锁产生的四个必要条件之一,带来的问题就是系统资源利用率低且不符合开发习惯,而死锁避免不是事先釆取某种限制措施破坏死锁的必要条件,只是注意 ...

  6. shell脚本书写

    #!/bin/bash #指定脚本默认使用的命令解释器 第1行 幻数 #!/usr/bin/python #!/bin/awk #!/bin/sed

  7. Linux的LCD驱动分析及移植

    测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 LCD驱动分析 LCD屏的驱动总体上分成两块,一块是GUI ...

  8. windows下nodejs正确安装方式

    ​ 下载安装包: 32 位安装包下载地址 : https://nodejs.org/dist/v4.4.3/node-v4.4.3-x86.msi 64 位安装包下载地址 : https://node ...

  9. python库--requests

    requests 方法 返回 参数 方法详情 .get()  r  url  get请求 params  url?后面的内容会以'key=value'的方式接到url后面 proxies 设置代理ip ...

  10. docker run配置参数

    Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...] -d, --detach=false 指定容器运行于前台还是后台,默认为false -i, - ...