torch.nn.Sequential()详解
官方文档
nn.Sequential
A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ordered dict of modules can also be passed in.
一个有序的容器,神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行,同时以神经网络模块为元素的有序字典也可以作为传入参数。
方式一:
作为一个有顺序的容器,将特定神经网络模块按照在传入构造器的顺序依次被添加到计算图中执行。
官方Example:
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# When `model` is run,input will first be passed to `Conv2d(1,20,5)`.
# The output of `Conv2d(1,20,5)` will be used as the input to the first `ReLU`;
# the output of the first `ReLU` will become the input for `Conv2d(20,64,5)`.
# Finally, the output of `Conv2d(20,64,5)` will be used as input to the second `ReLU`
例子:
net = nn.Sequential(
nn.Linear(num_inputs, num_hidden)
# 传入其他层
)
方式二:
将以特定神经网络模块为元素的有序字典(OrderedDict)为参数传入。
官方 Example:
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
例子:
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
源码分析
初始化函数 init
def __init__(self, *args):
super(Sequential, self).__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict):
for key, module in args[0].items():
self.add_module(key, module)
else:
for idx, module in enumerate(args):
self.add_module(str(idx), module)
首先使用 if 条件判断,若传入的参数为1个,且类型为 OrderedDict,将通过字典索引的方式利用 add_module 函数 将子模块添加到现有模块中。否则,通过 for 循环遍历参数,将所有的子模块添加到现有中。 注意,Sequential 模块的初始换函数没有异常处理。
forward 函数
def forward(self, input):
for module in self:
input = module(input)
return input
因为每一个 module 都继承于 nn.Module,都会实现 __call__ 与 forward 函数,所以 forward 函数中通过 for 循环依次调用添加到 self._module 中的子模块,最后输出经过所有神经网络层的结果。
torch.nn.Sequential()详解的更多相关文章
- Pytorch——torch.nn.Sequential()详解
参考:官方文档 源码 官方文档 nn.Sequential A sequential container. Modules will be added to it in the order th ...
- pytorch之nn.Conv1d详解
转自:https://blog.csdn.net/sunny_xsc1994/article/details/82969867,感谢分享 pytorch之nn.Conv1d详解
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- CNN卷积神经网络详解
前言 在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介 ...
- Hadoop的由来、Block切分、进程详解
Hadoop的由来.Block切分.进程详解 一.hadoop的由来 Google发布了三篇论文: GFS(Google File System) MapReduce(数据计算方法) BigTable ...
- torch.nn.LSTM()函数维度详解
123456789101112lstm=nn.LSTM(input_size, hidden_size, num_la ...
- pytorch nn.LSTM()参数详解
输入数据格式:input(seq_len, batch, input_size)h0(num_layers * num_directions, batch, hidden_size)c0(num_la ...
- (原)torch中显示nn.Sequential()网络的详细情况
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6065526.html 本部分多试几次就可以弄得清每一层具体怎么访问了. step1. 网络定义如下: ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
随机推荐
- 剑指 Offer 36. 二叉搜索树与双向链表
剑指 Offer 36. 二叉搜索树与双向链表 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的循环双向链表.要求不能创建任何新的节点,只能调整树中节点指针的指向. 为了让您更好地理解问题,以下面的 ...
- JDK、JRE、JVM的基本介绍
一 .Java三大版本 JavaSE 标准版(桌面程序.控制台开发-) JavaWE 嵌入式开发(手机.家电-) JavaEE 企业开发(web端.服务器开发-) 二.JDK.JRE.JVM区别 JD ...
- 浅析 Dapr 里的云计算设计模式
Dapr 实际上是把分布式系统 与微服务架构实践的挑战以及k8s 这三个主题的全方位的设计组合,特别是Kubernetes设计模式 一书作者Bilgin Ibryam 提出的Multi-Runtime ...
- 剑指 Offer 38. 字符串的排列
剑指 Offer 38. 字符串的排列 输入一个字符串,打印出该字符串中字符的所有排列. 你可以以任意顺序返回这个字符串数组,但里面不能有重复元素. 示例: 输入:s = "abc" ...
- 痞子衡嵌入式:在MDK开发环境下将关键函数重定向到RAM中执行的几种方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在MDK开发环境下将关键函数重定向到RAM中执行的几种方法. 这个关键函数重定向到 RAM 中执行系列文章,痞子衡已经写过 <IA ...
- docker for zabbix
docker run -d -v /home/zabbix/mysql --name zabbix-db-storage busybox:latest docker run -d --name zab ...
- vue-cli-service build 环境设置
zhidao zhouzongshuo的那个是使用vue-cli3打包项目,通过配置不同的指令给项目设置不一样的配置. npm run serve时会把process.env.NODE_ENV设置为' ...
- 第25篇-虚拟机对象操作指令之putstatic
之前已经介绍了getstatic与getfield指令的汇编代码执行逻辑,这一篇介绍putstatic指令的执行逻辑,putfield将不再介绍,大家可以自己去研究,相信大家有这个实力. putsta ...
- vue-router路由钩子
路由跳转前后,需要做某些操作,这时就可以使用路由钩子来监听路由的变化. 接收三个参数: to: Route: 即将要进入的目标路由对象 from: Route: 当前导航正要离开的路由 next: F ...
- 【Azure API 管理】APIM 配置Validate-JWT策略,验证RS256非对称(公钥/私钥)加密的Token
问题描述 在APIM中配置对传入的Token进行预验证,确保传入后端被保护的API的Authorization信息正确有效,可以使用validate-jwt策略.validate-jwt 策略强制要求 ...