洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)
神仙题。
首先考虑一个点的深度是什么,注意到对于笛卡尔树而言直接从序列的角度计算一个点的深度是不容易的,因为这样会牵扯到序列中多个元素,需要 fixed 的东西太多,计算起来太复杂了。因此考虑从树本身的角度计算一个点的深度。注意到对于一棵树上所有点 \(u\) 而言都有 \(dep_u=\sum\limits_{v}[\text{LCA}(u,v)=v]\),因此我们求解一个点 \(x\) 的答案时,可以枚举所有 \(u,v\) 并计算 \(v\) 对 \(u\) 的贡献,即,有多少个排列满足逆序对个数为 \(k\),且笛卡尔树上 \(v\) 为 \(u\) 的祖先。并且我们还可以注意到,对于一个序列而言,其笛卡尔树上某两点存在祖先关系是存在充要条件转化的,具体来说,\(\text{LCA}(u,v)=v\) 当且仅当 \(a_v\) 为 \(a[\min(u,v)…\max(u,v)]\) 的最小值,因此我们只需求解以下问题:
有多少个排列 \(p\),满足其逆序对个数为 \(k\),且 \(a_v=\min\limits_{i=\min(u,v)}^{\max(u,v)}a_i\)
这个问题看似难以下手,因为外面就已经枚举了两维 \(u,v\) 了,里面这东西也无法直接组合数求解,需要用 DP 之类的东西,一弄最低就是 \(n^3\),直接爆炸,不过细想其实不用复杂度那么高。我们首先考虑如果没有第二个条件怎么求,我们设 \(dp_{i,j}\) 表示有多少个长度为 \(i\) 的排列有 \(j\) 个逆序对,考虑怎么转移,不难发现,对于长度为 \(i+1\) 的排列,我们总能找到唯一的 \(a_{i+1}\),满足 \(a_{i+1}\) 与前面 \(i\) 个数产生的逆序对数为 \(x(x\in[0,i])\),也就是说 \(dp_{i+1,j}=\sum\limits_{x=0}^idp_{i,j-x}\),前缀和优化一下即可,这个在 CF1542E2 Abnormal Permutation Pairs (hard version) 中就已经见过了。对于此题亦是如此,与经典问题不同的一点是,直接按照 \(1,2,3,\cdots,n\) 的位置填数会爆炸,因此考虑换个顺序,如果 \(u<v\) 那么我们就按照 \(u,u+1,u+2,\cdots,v,u-1,u-2,\cdots,1,v+1,v+2,\cdots,n\) 的顺序填数,否则我们按照 \(u,u-1,u-2,\cdots,v,u+1,u+2,\cdots,n,v-1,v-2,\cdots,1\) 的顺序填。不难发现按照这样的顺序填数之后,其他位置上的填法都和前面一样,即第 \(i\) 个填的数可以为排列逆序对数产生 \([0,i-1]\) 中任意一个数的贡献,唯独 \(v\) 只有一种填法。而两种情况的差别的,前一种情况 \(v\) 会对排列逆序对数产生 \(|u-v|\) 的贡献,而后一种不会,因此如果写成生成函数的形式,就是前一种情况的方案数为 \([x^k]·x^{|u-v|}\prod\limits_{i=0}^{|u-v|-1}(\sum\limits_{j=0}^ix^j)·\prod\limits_{i=|u-v|+1}^{n-1}(\sum\limits_{j=0}^ix^j)\),后一种情况的方案数为 \(x^{|u-v|}\prod\limits_{i=0}^{|u-v|-1}(\sum\limits_{j=0}^ix^j)·\prod\limits_{i=|u-v|+1}^{n-1}(\sum\limits_{j=0}^ix^j)\),注意到对于一对 \(u,v\) 而言,上面两个式子的值只与 \(|u-v|\) 有关,因此可以对所有 \(|u-v|\) 预处理一波答案,复杂度 \(\mathcal O(n^4)\)。如果你观察能力再强一些,你还能发现这式子可以写成背包的形式,你对前后缀各做一遍背包就可以 \(n^3\) 求解了。
const int MAXN=300;
const int MAXK=44850;
int n,k,mod;
int pre[MAXN+5][MAXK+5],suf[MAXN+5][MAXK+5];
int sum[MAXK+5],c1[MAXN+5],c2[MAXN+5];
int getsum(int l,int r){return (sum[r]-((!l)?0:sum[l-1])+mod)%mod;}
int main(){
scanf("%d%d%d",&n,&k,&mod);pre[0][0]=1;
for(int i=0;i<=k;i++) sum[i]=1;
for(int i=1;i<n;i++){
for(int j=0;j<=k;j++) pre[i][j]=getsum(j-i,j);
memset(sum,0,sizeof(sum));sum[0]=pre[i][0];
for(int j=1;j<=k;j++) sum[j]=(sum[j-1]+pre[i][j])%mod;
} suf[n][0]=1;
for(int i=0;i<=k;i++) sum[i]=1;
for(int i=n-1;~i;i--){
for(int j=0;j<=k;j++) suf[i][j]=getsum(j-i,j);
memset(sum,0,sizeof(sum));sum[0]=suf[i][0];
for(int j=1;j<=k;j++) sum[j]=(sum[j-1]+suf[i][j])%mod;
} c1[0]=c2[0]=pre[n-1][k];
for(int i=1;i<n;i++){
for(int j=0;j<=k;j++) c1[i]=(c1[i]+1ll*pre[i-1][j]*suf[i+1][k-j])%mod;
for(int j=0;j<=k-i;j++) c2[i]=(c2[i]+1ll*pre[i-1][j]*suf[i+1][k-i-j])%mod;
} for(int i=1;i<=n;i++){
int res=0;
for(int j=1;j<=n;j++){
if(j<=i) res=(res+c1[i-j])%mod;
else res=(res+c2[j-i])%mod;
} printf("%d%c",res," \n"[i==n]);
}
return 0;
}
洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)的更多相关文章
- 【题解】洛谷P1273 有线电视网(树上分组背包)
次元传送门:洛谷P1273 思路 一开始想的是普通树形DP 但是好像实现不大好 观摩了一下题解 是树上分组背包 设f[i][j]为以i为根的子树中取j个客户得到的总价值 我们可以以i为根有j组 在每一 ...
- 【洛谷】P1541 乌龟棋(四维背包dp)
题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...
- 【题解】洛谷P1941 [NOIP2014TG] 飞扬的小鸟(背包DP)
次元传送门:洛谷P1941 思路 从题意可知 在每个单位时间内 可以无限地向上飞 但是只能向下掉一次 所以我们可以考虑运用背包解决这道题 上升时 用完全背包 下降时 用01背包 设f[x][y]为在坐 ...
- 【题解】洛谷P1541 [NOIP2010TG] 乌龟棋(类似背包的DP)
题目来源:洛谷P1541 思路 类似背包的题 总之就是四种卡牌取的先后顺序不同导致的最终ans不同 所以我们用一个四维数组每一维分别表示第几种取了几张的最大分数 然后就是简单DP解决 代码 #incl ...
- 洛谷P5206 [WC2019] 数树(生成函数+容斥+矩阵树)
题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\( ...
- [USACO19DEC]Tree Depth P
题意 求逆序对为\(k\)的\(n\)排列中,生成的笛卡尔数,每个位置的深度和.\(n\le 300\) 做法 设\(f_{k}\)为\(n\)排列中逆序对为\(k\)的个数,其生成函数为:\[\pr ...
- 【洛谷P4178】Tree
题面 题解 感觉和\(CDQ\)分治一样套路啊 首先,构建出点分树 对于每一层分治重心,求出它到子树中任意点的距离 然后\(two-pointers\)计算满足小于等于\(K\)的点对数目,加入答案 ...
- BZOJ2654 & 洛谷2619:tree——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2654 https://www.luogu.org/problemnew/show/P2619 给你 ...
- 洛谷4178 BZOJ1468 Tree题解点分治
点分治的入门练习. 题目链接 BZOJ的链接(权限题) 关于点分治的思想我就不再重复了,这里重点说一下如何判重. 我们来看上图,假设我们去除了1节点,求出d[2]=1,d[3]=d[4]=2 假设k为 ...
随机推荐
- Salesforce 生命周期管理(二)Agile & Scrum 浅谈
本篇参考: https://trailhead.salesforce.com/content/learn/modules/salesforce-agile-basics https://www.scr ...
- Coursera Deep Learning笔记 序列模型(三)Sequence models & Attention mechanism(序列模型和注意力机制)
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用" ...
- 多边形——————区间dp
原题链接:https://www.acwing.com/problem/content/285/ 题意简单来说就是:给你一个环,断掉一条边使其成为一个链,用这个链跑dp,求最大得分. 首先这不是一道板 ...
- AOP源码解析:AspectJAwareAdvisorAutoProxyCreator类的介绍
AspectJAwareAdvisorAutoProxyCreator 的类图 上图中一些 类/接口 的介绍: AspectJAwareAdvisorAutoProxyCreator : 公开了Asp ...
- Python | 标识符命名规范
简单地理解,标识符就是一个名字,就好像我们每个人都有属于自己的名字,它的主要作用就是作为变量.函数.类.模块以及其他对象的名称. Python 中标识符的命名不是随意的,而是要遵守一定的命令规则,比如 ...
- Linux网卡bond模式
Bond模式 交换机配置 mode=0 balance-rr 轮询均衡模式 LACP mode on 强制链路聚合 mode=1 active-backup 主备模式 无 mode=2 balance ...
- Downward API —— 在容器内部获取 Pod 信息
我们知道,每个 Pod 在被超过创建出来之后,都会被系统分配唯一的名字.IP地址,并且处于某个 Namespace 中,那么我们如何在 Pod 的容器内获取 Pod 的这些重要信息呢? 答案就是使用 ...
- HashMap 中的一个“坑”!
最近公司新来了一个小伙伴,问了磊哥一个比较"奇怪"的问题,这个问题本身的难度并不大,但比较"隐蔽",那究竟是什么问题呢?接下来我们一起来看. 起因 最近公司 ...
- 【Go语言学习笔记】函数做参数和闭包
函数做参数 在Go语言中,函数也是一种数据类型,我们可以通过type来定义它,它的类型就是所有拥有相同的参数,相同的返回值的一种类型.类似于重写(同名覆盖). 回调函数:函数有一个参数是函数类型,这个 ...
- google浏览器设置检查元素显示框位置