题目描述

FJ买了一些干草堆,他想把这些干草堆分成N堆(1<=N<=100,000)摆成一圈,其中第i堆有B_i数量的干草。不幸的是,负责运货的司机由于没有听清FJ的要求,只记住分成N堆摆成一圈这个要求,而每一堆的数量却是A_i(1<=i<=N)。当然A_i的总和肯定等于B_i的总和。

FJ可以通过移动干草来达到要求,即使得A_i=B_i,已知把一个干草移动x步需要消耗x数量的体力,相邻两个干草堆之间的步数为1。

请帮助FJ计算最少需要消耗多少体力才能完成任务。

输入

第一行输入一个整数N。

接下来N行,每行两个整数,其中第i+1行描述A_i和B_i(1<=A_i,B_i<=1000)。

输出

输出一个数表示最少需要消耗的体力。

样例输入

4
7 1
3 4
9 2
1 13

样例输出

13

提示

【样例说明】

从第1堆中移动6个干草到第4堆,从第3堆中移动1个干草到第2堆,从第3堆中移动6个干草到第4堆中。

分析:

思维好题。完全没想到,看了题解的思路才明白。

设$f_i$表示$i->i+1$运了$f_i$堆稻草,$f_n$表示$n->1$运了$f_n$堆。

那么有:

$a_1-f_1+f_n=b_1$

$a_2-f_2+f_1=b_2$

$a_3-f_3+f_2=b_3$

………

$a_n-f_n+f_{n-1}=b_n$

发现合并后没有意义,先移项:

$f_1=b_1-a_1+f_n$

$f_2=b_2-a_2+f_1$

$f_3=b_3-a_3+f_2$

………

$f_n=b_n-a_n+f_{n-1}$

将上面的$f_i$向下代入:

$f_1=b_1-a_1+f_n$

$f_2=b_2-a_2+b_1-a_1+f_n$

$f_3=b_3-a_3+b_2-a_2+b_1-a_1+f_n$

………

$f_n=f_n$

那么我们就得到了$f_i$与$f_n$的关系,取绝对值时改一下符号:

(设$s_i$表示$a_i-b_i$的前缀和,$d$表示$f_n$)

$|f_1|=|s_1-|-d||$

$|f_2|=|s_2-|-d||$

$|f_3|=|s_3-|-d||$

…………

$|f_n|=|-d|$

那么就每个式子就变成了$|x-y|$的形式,那么问题就是求数轴上每个点到同一个位置的距离最小。那么就是中位数了。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define N 100005
using namespace std;
int n,a,b,s[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a,&b);
s[i]=s[i-1]+a-b;
}
sort(s+1,s+n+1);
int x=-s[(n+1)/2];
long long ans=0;
for(int i=1;i<=n;i++) ans+=abs(s[i]+x);
printf("%lld\n",ans);
return 0;
}

思维要好好锻炼,加油刷题吧!

DTOJ 1561: 草堆摆放的更多相关文章

  1. 7 November in 614

    每日总结不能少!让自己的头脑好好清醒清醒,才不会犯那些所谓的低级错误! Contest A. ssoj3045 A 先生砍香蕉树 根据数据范围 \(m\le 1000,b\le 10000\),显然本 ...

  2. 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  3. Java栈和堆的区别

    一.栈空间 1.栈空间存储数据效率高 2.栈中的数据是按“先进后出”的方式管理 3.栈空间存储空间比较小,不能存放大量的数据 4.JVM将基本类型的数据存放在栈空间 帮助理解 1.“客栈” 能提供很多 ...

  4. bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】

    首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...

  5. 【BZOJ 1594】 [Usaco2008 Jan]猜数游戏 (二分+并查集)

    1594: [Usaco2008 Jan]猜数游戏 Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在牛棚后面 ...

  6. 【BZOJ1594】[Usaco2008 Jan]猜数游戏 二分答案+并查集

    [BZOJ1594][Usaco2008 Jan]猜数游戏 Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在 ...

  7. bzoj 1594: [Usaco2008 Jan]猜数游戏——二分+线段树

    Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在牛棚后面摆N(1 <= N<= 1,000,00 ...

  8. 【bzoj1594】猜数游戏

    1594: [Usaco2008 Jan]猜数游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 556  Solved: 225 Descripti ...

  9. BZOJ 1594: [Usaco2008 Jan]猜数游戏 线段树 + 思维 + 二分

    Code: #include<bits/stdc++.h> #define maxn 3000000 using namespace std; void setIO(string s) { ...

随机推荐

  1. 【Takin使用日记】记一次TransmittableThreadLocal引起的业务异常

    对于常见的 WEB 容器,Takin 通过增强 org.apache.catalina.core.StandardHostValve#invoke 方法,拦截并解析方法入参的 Request 对象中的 ...

  2. .net Xml加密解密操作

    生成密钥的方法: /// <summary>生成RSA加密 解密的 密钥 /// 生成的key就是 方法EncryptByRSA与DecryptByRSA用的key了 /// </s ...

  3. [软工顶级理解组] Beta阶段项目展示

    目录 团队成员 软件介绍 项目简介 预期典型用户 功能描述 预期目标用户数 用户反馈 团队管理 分工协作 项目管理 取舍平衡 代码管理 程序测试 代码规范 文档撰写 继续开发指导性 用户沟通 需求分析 ...

  4. UltraSoft - Alpha - Postmortem 事后分析

    Alpha阶段 Postmortem会议 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 主要是解决DDL提醒功能的问题,定义的比较清楚,对典型用户和典 ...

  5. gcc中预定义的宏__GNUC__

    转载:gcc中预定义的宏__GNUC__ - Cccarl - 博客园 (cnblogs.com) 今天在看Linux系统编程这本书的代码的时候看到了__GNUC__,不太清楚这个宏所以去查了一下,以 ...

  6. linux shell 函数返回值问题(超过255)

    最近再写一个shell测试的时候出现问题,函数返回值异常 用shell计算斐波那契数列数列,写了一个shell函数,然后调用的,验证的时候我只随便计算了几个数(10以内),确认结果是正确的就提交了,后 ...

  7. F. Mattress Run 题解

    F. Mattress Run 挺好的一道题,对于DP的本质的理解有很大的帮助. 首先要想到的就是将这个拆成两个题,一个dp光求获得足够的夜晚的最小代价,一个dp光求获得足够的停留的最小代价. 显然由 ...

  8. Spring Cloud Alibaba 使用RestTemplate进行服务消费

    创建服务提供者工程 创建spring-cloud-alibaba-service-member工程,会员中心服务该服务提供用户会员信息. pom.xml <?xml version=" ...

  9. SSH 提示密码过期,如何通过 ansible 批量更新线上服务器密码

    起因 线上环境是在内网,登陆线上环境需要使用 VPN + 堡垒机 登陆,但是我日常登陆线上环境都是 VPN + 堡垒机 + Socks5常驻代理,在shell端只需要保存会话,会话使用socks5代理 ...

  10. Red Hat Enterprise Linux (RHEL) 9 更新了什么,即 Rocky Linux 9 和 AlmaLinux 9 展望

    请访问原文链接:https://sysin.org/blog/rhel-9-vision/,查看最新版.原创作品,转载请保留出处. 作者:gc(at)sysin.org,主页:www.sysin.or ...