题目描述

FJ买了一些干草堆,他想把这些干草堆分成N堆(1<=N<=100,000)摆成一圈,其中第i堆有B_i数量的干草。不幸的是,负责运货的司机由于没有听清FJ的要求,只记住分成N堆摆成一圈这个要求,而每一堆的数量却是A_i(1<=i<=N)。当然A_i的总和肯定等于B_i的总和。

FJ可以通过移动干草来达到要求,即使得A_i=B_i,已知把一个干草移动x步需要消耗x数量的体力,相邻两个干草堆之间的步数为1。

请帮助FJ计算最少需要消耗多少体力才能完成任务。

输入

第一行输入一个整数N。

接下来N行,每行两个整数,其中第i+1行描述A_i和B_i(1<=A_i,B_i<=1000)。

输出

输出一个数表示最少需要消耗的体力。

样例输入

4
7 1
3 4
9 2
1 13

样例输出

13

提示

【样例说明】

从第1堆中移动6个干草到第4堆,从第3堆中移动1个干草到第2堆,从第3堆中移动6个干草到第4堆中。

分析:

思维好题。完全没想到,看了题解的思路才明白。

设$f_i$表示$i->i+1$运了$f_i$堆稻草,$f_n$表示$n->1$运了$f_n$堆。

那么有:

$a_1-f_1+f_n=b_1$

$a_2-f_2+f_1=b_2$

$a_3-f_3+f_2=b_3$

………

$a_n-f_n+f_{n-1}=b_n$

发现合并后没有意义,先移项:

$f_1=b_1-a_1+f_n$

$f_2=b_2-a_2+f_1$

$f_3=b_3-a_3+f_2$

………

$f_n=b_n-a_n+f_{n-1}$

将上面的$f_i$向下代入:

$f_1=b_1-a_1+f_n$

$f_2=b_2-a_2+b_1-a_1+f_n$

$f_3=b_3-a_3+b_2-a_2+b_1-a_1+f_n$

………

$f_n=f_n$

那么我们就得到了$f_i$与$f_n$的关系,取绝对值时改一下符号:

(设$s_i$表示$a_i-b_i$的前缀和,$d$表示$f_n$)

$|f_1|=|s_1-|-d||$

$|f_2|=|s_2-|-d||$

$|f_3|=|s_3-|-d||$

…………

$|f_n|=|-d|$

那么就每个式子就变成了$|x-y|$的形式,那么问题就是求数轴上每个点到同一个位置的距离最小。那么就是中位数了。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define N 100005
using namespace std;
int n,a,b,s[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a,&b);
s[i]=s[i-1]+a-b;
}
sort(s+1,s+n+1);
int x=-s[(n+1)/2];
long long ans=0;
for(int i=1;i<=n;i++) ans+=abs(s[i]+x);
printf("%lld\n",ans);
return 0;
}

思维要好好锻炼,加油刷题吧!

DTOJ 1561: 草堆摆放的更多相关文章

  1. 7 November in 614

    每日总结不能少!让自己的头脑好好清醒清醒,才不会犯那些所谓的低级错误! Contest A. ssoj3045 A 先生砍香蕉树 根据数据范围 \(m\le 1000,b\le 10000\),显然本 ...

  2. 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  3. Java栈和堆的区别

    一.栈空间 1.栈空间存储数据效率高 2.栈中的数据是按“先进后出”的方式管理 3.栈空间存储空间比较小,不能存放大量的数据 4.JVM将基本类型的数据存放在栈空间 帮助理解 1.“客栈” 能提供很多 ...

  4. bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】

    首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...

  5. 【BZOJ 1594】 [Usaco2008 Jan]猜数游戏 (二分+并查集)

    1594: [Usaco2008 Jan]猜数游戏 Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在牛棚后面 ...

  6. 【BZOJ1594】[Usaco2008 Jan]猜数游戏 二分答案+并查集

    [BZOJ1594][Usaco2008 Jan]猜数游戏 Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在 ...

  7. bzoj 1594: [Usaco2008 Jan]猜数游戏——二分+线段树

    Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在牛棚后面摆N(1 <= N<= 1,000,00 ...

  8. 【bzoj1594】猜数游戏

    1594: [Usaco2008 Jan]猜数游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 556  Solved: 225 Descripti ...

  9. BZOJ 1594: [Usaco2008 Jan]猜数游戏 线段树 + 思维 + 二分

    Code: #include<bits/stdc++.h> #define maxn 3000000 using namespace std; void setIO(string s) { ...

随机推荐

  1. vue3.x移动端适配px2rem

    1.什么是px2rem px2rem是一个插件能将px自动转换为rem,以适配各种不同的屏幕尺寸.前端开发可以直接使用设计稿量出的尺寸或者蓝湖给出的px进行布局,这样极大的提高了开发效率. 2.前提条 ...

  2. Gopher们写if err != nil是否腻了?

    效果 go里面没有try catch,比较类似的有panic() 和 recover()机制,但是代价太大了,他们的场景更多使用在"程序异常,无法继续往下执行了这种场景",比如配置 ...

  3. Scrum Meeting 11

    第11次例会报告 日期:2021年06月01日 会议主要内容概述: 汇报了进度,开始爆肝. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公开性: ...

  4. 手把手教你学Dapr - 2. 必须知道的概念

    Sidecar 边车 Dapr API提供Http和gRPC两种通讯方式. 运行方式则可以是容器也可以是进程(Windows开发推荐使用Self Hosted,后续会解释). 这样的好处是与运行环境无 ...

  5. websocket入门案例(echo)

    websocket是用来干什么的,具体的请自行百度. 本文实现一个简单的websocket的入门小例子,实现客户端发送一句换,服务器端返回.即一个简单的交互. 一.服务器端的实现 1.创建一个类实现S ...

  6. RocketMQ源码详解 | Producer篇 · 其二:消息组成、发送链路

    概述 在上一节 RocketMQ源码详解 | Producer篇 · 其一:Start,然后 Send 一条消息 中,我们了解了 Producer 在发送消息的流程.这次我们再来具体下看消息的构成与其 ...

  7. 极简实用的Asp.NetCore框架再新增商城模块

    概述 关于这个框架的背景,在前面我已经交代过了.不清楚的可以查看这个链接 1.极简实用的Asp.NetCore模块化框架决定免费开源了 2.极简实用的Asp.NetCore模块化框架新增CMS模块 算 ...

  8. SCons - 简单而强大的项目编译脚本(原文https://www.cnblogs.com/binchen-china/p/5646791.html)

    N年前学的makefile,当时还勉强能写一些简单的工程编译,现在已经基本忘了.makefile确实编写复杂,而且平时也不是经常使用,容易忘记.偶识了scons,一切都变的简单了.最近研究了下scon ...

  9. 第01课 OpenGL窗口(4)

    下面的代码处理所有的窗口消息.当我们注册好窗口类之后,程序跳转到这部分代码处理窗口消息. LRESULT CALLBACK WndProc( HWND hWnd, // 窗口的句柄 UINT uMsg ...

  10. VulnHub-[DC-8-9]-系列通关手册

    DC8-通关手册 DC-8是另一个专门构建的易受攻击的实验室,目的是在渗透测试领域积累经验. 这个挑战有点复杂,既是实际挑战,又是关于在Linux上安装和配置的两因素身份验证是否可以阻止Linux服务 ...