CF1469D Ceil Divisions 题解
Content
你有一个长度为 \(n\) 的数组 \(a\),初始时,\(\forall i\in[1,n]\),\(a_i=i\)。
每次操作选择两个数 \(x,y(1\leqslant x,y\leqslant n,x\neq y)\),然后将 \(a_x\) 转换为 \(\left\lceil\dfrac{a_x}{a_y}\right\rceil\)。你需要执行不超过 \(n+5\) 次操作将数组 \(a\) 转换为一个包含 \(n-1\) 个 \(1\) 和 \(1\) 个 \(2\) 的数组。请给出一个构造方案。
数据范围:\(t\) 组数据,\(1\leqslant t\leqslant 10^3\),\(3\leqslant n,\sum n\leqslant 2\times 10^5\)。
Solution
不难想到的做法是,\(\forall i\in[3,n)\),每次将 \(a_i\) 转换为 \(\left\lceil\dfrac{a_i}{a_{i+1}}\right\rceil\)。可以证明,由于 \(a_i<a_{i+1}\),所以转换的结果必然为 \(1\)。然后我们再用剩下的 \(2\) 不断的去除 \(n\) 直到 \(n\) 变成 \(1\) 为止。操作数约为 \(n+\log n\),而 \(\log n\) 最大值显然会超过 \(5\),因此是不可行的。考虑如何优化这个操作方案。
我们发现,拿 \(\left\lceil\sqrt{n}\right\rceil\) 去除 \(n\) 最多仅需 \(2\) 次就可以将 \(n\) 变成 \(1\),因此,我们不妨把 \([\left\lceil\sqrt{n}\right\rceil,n]\),\([\left\lceil\sqrt{\left\lceil\sqrt{n}\right\rceil}\right\rceil,\left\lceil\sqrt{n}\right\rceil]\),\(\dots\) 等部分分成一段(注意 \(1,2\) 不能被分到任何一段中去),对于每一段,我们先把中间的所有元素全拿最后一个元素去除使它门全部都变成 \(1\),然后再去拿最左边的元素去除以最右边的元素 \(2\) 次,即可做到使一段里面的元素全部变成 \(1\)。
然后这道题目就可以过了。
Code
namespace Solution {
const int N = 2e5 + 7;
int n;
struct node {int x, y;};
vector<node> ans;
ii checksq(int x) {
int sqrtx = sqrt(x);
return sqrtx * sqrtx == x;
}
iv Main() {
MT {
read(n), ans.clear();
int cur = sqrt(n) + !checksq(n), precur = n, fl = 0;
while(precur > 2) {
F(int, i, cur + 1, precur - 1) ans.push_back((node){i, precur});
F(int, i, 1, 2) ans.push_back((node){precur, cur});
precur = cur, cur = sqrt(precur) + !checksq(precur);
}
int cnt = ans.size(); println(cnt);
F(int, i, 0, cnt - 1) printf("%d %d\n", ans[i].x, ans[i].y);
}
return;
}
}
CF1469D Ceil Divisions 题解的更多相关文章
- 1644 免费馅饼 题解(c++)(S.B.S.)
1644 免费馅饼(巴蜀oj上的编号) 题面: SERKOI最新推出了一种叫做“免费馅饼”的游戏. 游戏在一个舞台上进行.舞台的宽度为W格,天幕的高度为H格,游戏者占 ...
- POJ 2585 Window Pains 题解
链接:http://poj.org/problem?id=2585 题意: 某个人有一个屏幕大小为4*4的电脑,他很喜欢打开窗口,他肯定打开9个窗口,每个窗口大小2*2.并且每个窗口肯定在固定的位置上 ...
- 「CF#554 div2」题解
A 水题一道. 题目的大致意思就是:给你两个集合,求集合间有多少数对和是奇数. 题解,开\(4\)个桶后,求一个\(min\)就可以了. #include <bits/stdc++.h> ...
- 算法(第四版)C# 习题题解——3.1
写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 查找更方便的版本见:https ...
- HAOI2017 简要题解
「HAOI2017」新型城市化 题意 有一个 \(n\) 个点的无向图,其中只有 \(m\) 对点之间没有连边,保证这张图可以被分为至多两个团. 对于 \(m\) 对未连边的点对,判断有哪些点对满足将 ...
- SCOI2016 Day2 简要题解
「SCOI2016」妖怪 题意 有 \(n\) 只妖怪,每只妖怪有攻击力 \(\text{atk}\) 和防御力 \(\text{dnf}\) ,在环境 \((a, b)\) 下,它可以把攻击力和防御 ...
- SCOI 2015 Day1 简要题解
「SCOI2015」小凸玩矩阵 题意 一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列, ...
- leetcode & lintcode 题解
刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...
- 洛谷NOIp热身赛题解
洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...
随机推荐
- 【HTML】标签
HTML标签 2020-09-08 15:37:37 by冲冲 1. 标签 <!DOCTYPE html> <html> <head> <meta cha ...
- springboot增加多端口管理
目标是这样的: 方法 方法还是比较简单的1.点击菜单栏:Views -> Tool Windows -> Services:中文对应:视图 -> 工具窗口 -> 服务:快捷键是 ...
- 数字逻辑实践5->Verilog语法 | wire 与 reg 的选择与特性
问题起因:最初学习数字逻辑设计理论的时候还没有注意到,在实验课上写代码的时候发现了一个问题: 对于源码模块的变量定义,何时定义为reg.何时定义为wire?它们各自又有什么特性和物理意义? 1. wi ...
- Go语言核心36讲(Go语言实战与应用十六)--学习笔记
38 | bytes包与字节串操作(上) 前导内容: bytes.Buffer基础知识 strings包和bytes包可以说是一对孪生兄弟,它们在 API 方面非常的相似.单从它们提供的函数的数量和功 ...
- vcstool是什么?
为什么会去了解vcstool,在想要手动编译并且获取ROS源码的时候,有一个Get ROS 2 code的章节中使用到了这个工具. mkdir -p ~/ros2_foxy/src cd ~/ros2 ...
- 洛谷 P4516 [JSOI2018]潜入行动
题面传送门 一眼树形 \(dp\) 本题有 \(2\) 大难点. 难点之一是状态的设计,这里需要四维状态,\(dp[i][j][0/1][0/1]\) 表示在以 \(i\) 为根的子树内放了 \(j\ ...
- 洛谷 P7116 - [NOIP2020] 微信步数(拉格朗日插值)
洛谷题面传送门 我竟然独立切掉了这道题!incredible! 纪念我逝去的一上午(NOIP 总时长 4.5h,这题做了我整整 4.5h) 首先讲一下现场我想的 80 分的做法,虽然最后挂成了 65 ...
- P7091 数上的树
题目传送门. 首先将 \(n\) 分解质因数,用 DFS 求出 \(n\) 的所有因数,记为 \(d_1,d_2,\cdots,d_c\),跑一遍反素数那题的代码可知 \(c\leq 23327\)( ...
- LVS-原理
一. 集群的概念 服务器集群简称集群是一种服务器系统,它通过一组松散集成的服务器软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台服务器.集群系统中的单个服务器通常称 ...
- Ansi,UTF8,Unicode,ASCII编码的区别
Ansi,UTF8,Unicode,ASCII编码的区别 近日需要不同的编码,关于上述编码,一直迷迷糊糊,查了些资料,总算大致了解了, 下面全是从网上搜来的: 1. ASCII和Ansi编码 ...