NOIP模拟21:「Median·Game·Park」
T1:Median
线性筛+桶+随机化(??什么鬼?)。
首先,题解一句话秀到了我:
考虑输入如此诡异,其实可以看作随机数据
随机数据??
这就意味着分布均匀。。
又考虑到w<=k<=n
可以用桶了。
中位数暴力算的话是排序后取中间。
但是时间明显不允许。只能\(O(n)\)过掉。所以要维护两个中位数指针(k%2==1当然就是一个了)。
由于数据随机,分布均匀,所以可以直接跳桶。
笑死,我当时不信还把数据输了出去,发现有的相邻数据差了几百,就这还能直接跳。。。。。好吧,我肤浅了。。。。
差点没调出来的代码:
200行的煌煌大作QWQ
#include<bits/stdc++.h>
using namespace std;
namespace STD
{
#define ll long long
#define rr register
const int N=1.1e7;
const int MAXN=1.8e8+3;
int n,k;
int w;
ll cnt,prime[N];
bool notprime[MAXN];
double ans;
int s2[N];
int ton[N<<1];
inline void Prime()
{
for(rr int i=2;i<MAXN;i++)
{
if(!notprime[i]) prime[++cnt]=i;
for(rr int j=1;j<=cnt&&i*prime[j]<MAXN;j++)
{
notprime[i*prime[j]]=1;
if(!(i%prime[j]))
break;
}
}
}
inline int read()
{
rr int x_read=0,y_read=1;
rr char c_read=getchar();
while(c_read<'0'||c_read>'9')
{
if(c_read=='-') y_read=-1;
c_read=getchar();
}
while(c_read<='9'&&c_read>='0')
{
x_read=(x_read*10)+(c_read^48);
c_read=getchar();
}
return x_read*y_read;
}
};
using namespace STD;
int main()
{
Prime();
n=read(),k=read(),w=read();
for(rr int i=1;i<=n;i++)
{
prime[i]=prime[i]*i%w;
s2[i]=prime[i]+prime[i/10+1];
}
if(k&1)
{
int *p=ton+s2[1],l=1,sum=1;
ton[s2[1]]++;
for(rr int i=2;i<=k;i++)
{
sum++;
ton[s2[i]]++;
if(s2[i]<=(p-ton)) l++;
if(l<((sum>>1)+1))
while(l<((sum>>1)+1))
{
p++;
while(!(*p)) p++;
l+=(*p);
}
else
while(l-(*p)>=((sum>>1)+1))
{
l-=(*p);
p--;
while(!(*p)) p--;
}
}
ans+=(p-ton);
for(rr int i=k+1;i<=n;i++)
{
ton[s2[i]]++;
if(s2[i]<=p-ton) l++;
ton[s2[i-k]]--;
if(s2[i-k]<=p-ton) l--;
if(l<((k>>1)+1))
while(l<((k>>1)+1))
{
p++;
while(!(*p)) p++;
l+=(*p);
}
else
while(l-(*p)>=((k>>1)+1))
{
l-=(*p);
p--;
while(!(*p)) p--;
}
ans+=(p-ton);
}
printf("%.1lf\n",ans);
}
else
{
int *p1=ton+min(s2[1],s2[2]),*p2=ton+max(s2[1],s2[2]),l2=2,l1=1,sum=2;
ton[s2[1]]++;
ton[s2[2]]++;
for(rr int i=3;i<=k;i++)
{
sum++;
ton[s2[i]]++;
if(s2[i]<=(p1-ton)) l1++;
if(s2[i]<=(p2-ton)) l2++;
if(l2<((sum>>1)+1))
while(l2<((sum>>1)+1))
{
p2++;
while(!(*p2)) p2++;
l2+=(*p2);
}
else
while(l2-(*p2)>=((sum>>1)+1))
{
l2-=(*p2);
p2--;
while(!(*p2)) p2--;
}
if(l1<(sum>>1))
while(l1<(sum>>1))
{
p1++;
while(!(*p1)) p1++;
l1+=(*p1);
}
else
while(l1-(*p1)>=(sum>>1))
{
l1-=(*p1);
p1--;
while(!(*p1)) p1--;
}
}
double temp=((p1-ton)+(p2-ton));
ans+=(temp/2.00);
for(rr int i=k+1;i<=n;i++)
{
ton[s2[i]]++;
if(s2[i]<=(p1-ton)) l1++;
if(s2[i]<=(p2-ton)) l2++;
ton[s2[i-k]]--;
if(s2[i-k]<=p1-ton) l1--;
if(s2[i-k]<=p2-ton) l2--;
if(l2<((k>>1)+1))
while(l2<((k>>1)+1))
{
p2++;
while(!(*p2)) p2++;
l2+=(*p2);
}
else
while(l2-(*p2)>=((k>>1)+1))
{
l2-=(*p2);
p2--;
while(!(*p2)) p2--;
}
if(l1<(k>>1))
while(l1<(k>>1))
{
p1++;
while(!(*p1)) p1++;
l1+=(*p1);
}
else
while(l1-(*p1)>=(k>>1))
{
l1-=(*p1);
p1--;
while(!(*p1)) p1--;
}
temp=(p1-ton)+(p2-ton);
ans+=temp/2.00;
}
printf("%.1lf\n",ans);
}
}
其他的事情
在讨论时土哥提到了一个叫”对顶堆”的东西来维护中位数,当然,\(O(nlogn)\)会TLE。
这个东西其实就是维护两个堆,一个大根堆,一个小根堆。
小根堆里的数全部大于大根堆里的数,这样就有单调性了,相当于排了个序。
但比直接用排序算法在N上少了个指数。
当有数进来时,先与两个堆顶比较如果大于大根堆顶就进小根堆,否则进大根堆。
然后比较两个堆的大小,然后将多的数放进另一个堆即可。
中位数就是堆顶之和除以2
至于说k%2==1的情况,你就不要把中位数往堆里放即可。
T2:Game
考场上一眼看出来就是贪心,直接放了个堆上去,还纳闷为啥这么简单呢。。
然后T了。
正解是\(O(nk)\)
还是桶。一场考试三道题,两道考桶。。。。
这题有个看起来很明显但是你往往会忽视的性质:
如果你拿进序列的数比当前序列里的最大值还要大,那么它下一轮一会被拿走
简单到无需证明。。
但是他会决定你是\(A\)还是\(T\)。
记得开longlong。
#include<bits/stdc++.h>
using namespace std;
namespace STD
{
#define ll long long
#define rr register
#define inf INT_MAX
const int N=100004;
const int K=2004;
int n,k,p;
int *po;
ll score[2];
ll a[N];
int b[N];
int read()
{
rr int x_read=0,y_read=1;
rr char c_read=getchar();
while(c_read<'0'||c_read>'9')
{
if(c_read=='-') y_read=-1;
c_read=getchar();
}
while(c_read<='9'&&c_read>='0')
{
x_read=(x_read*10)+(c_read^48);
c_read=getchar();
}
return x_read*y_read;
}
};
using namespace STD;
int main()
{
n=read(),k=read();
for(rr int i=1;i<=n;i++)
a[i]=read();
while(k--)
{
int p=read();
ll temp=-inf;
int roun=1;
int now=p;
for(rr int i=1;i<=p;i++)
{
temp=max(temp,a[i]);
b[a[i]]++;
}
po=b+temp;
temp=-inf;
while(roun<=n)
{
if(temp>(po-b))
{
score[roun&1]+=temp;
temp=-inf;
}
else
{
score[roun&1]+=(po-b);
int x=*po;
x--;
*po=x;
}
now++;
if(now<=n)
{
if(a[now]>(po-b))
temp=a[now];
else
b[a[now]]++;
}
while(((*po)==0)&&(po>b))
po--;
roun++;
}
printf("%lld\n",score[1]-score[0]);
score[0]=score[1]=0;
}
}
T3:Park
还在推方程,先鸽掉好了。
NOIP模拟21:「Median·Game·Park」的更多相关文章
- NOIP 模拟 $21\; \rm Median$
题解 \(by\;zj\varphi\) 对于这个序列,可以近似得把它看成随机的,而对于随机数列,每个数的分布都是均匀的,所以中位数的变化可以看作是常数 那么可以维护一个指向中位数的指针,同时维护有多 ...
- NOIP模拟22「d·e·f」
T1:d 枚举. 现在都不敢随便打枚举了. 实际上我们只关注最后留下的矩阵中最小的长与宽即可. 所以我们将所有矩阵按a的降序排列. 从第\(n-m\)个开始枚举. 因为你最多拿 ...
- NOIP模拟21+22
模拟21确实毒瘤...考场上硬刚T3 2.5h,成功爆零 T1.数论 看这题目就让人不想做,考场上我比较明智的打完暴力就弃掉了,没有打很久的表然后找规律. 正解貌似是乱搞,我们考虑一个比较显然的结论: ...
- NOIP 模拟 $21\; \rm Park$
题解 \(by\;zj\varphi\) 首先,分析一下这个答案:本质上是求在一条路径上,选择了一些点,这些点的贡献是它周围的点权和 - 它上一步的点权 对于一棵树,可以先确定一个根,然后每条路径就可 ...
- NOIP模拟测试「简单的区间·简单的玄学·简单的填数·简单的序列」
简单的区间 $update$ 终于$AC$了 找到$(sum[r]+sum[l](sum表示以中间点为基准的sum)-mx)\%k==0$的点 注意这里$sum$表示是以$mid$为基准点,(即$su ...
- NOIP模拟13「工业题·卡常题·玄学题」
T1:工业题 基本思路 这题有一个重要的小转化: 我们将原来的函数看作一个矩阵,\(f(i,j-1)*a\)相当于从\(j-1\)向右走一步并贡献a,\(f(i-1,j)*b\)相当于从\(i-1 ...
- NOIP模拟26「神炎皇·降雷皇·幻魔皇」
T1:神炎皇 又是数学题,气死,根本不会. 首先考虑式子\(a+b=ab\),我们取\(a\)与\(b\)的\(gcd\):\(d\),那么式子就可以改写成: \[(a'+b')*d=a'b' ...
- NOIP模拟16:「Star Way To Heaven·God Knows·Loost My Music」
T1:Star Way To Heaven 基本思路: 最小生成树. 假如我们将上边界与下边界看作一个点,然后从上边界经过星星向下边界连边,会发现,他会形成一条线将整个矩形分为左右两个部分. ...
- NOIP模拟14「队长快跑·影魔·抛硬币」
T1:队长快跑 基本思路: 离散化·DP·数据结构优化DP 这三个我都没想到....气死. 定义状态数组:\(c[i][j]\)表示在i时最小的a值是j时可以摧毁的最多的水晶数. 那么 ...
随机推荐
- NOIP&CSP PJ 难度刷题记录
前言 本来不想写前言的(>人<:) 这只是 mjl 给我们布置的作业,并不是我自己在刷题! 不保证所有代码的正确性,它们仅仅是通过了所有数据点而已. 1.模拟板块 整体难度:红~黄(模拟不 ...
- 涨姿势啦!Java程序员装X必备词汇之对象标记Mark Word!
大家好,我是庆哥Java,一个专注于干货分享的Java自学者! 写在前面 如果你已经知道什么是Mark Word,那我也希望你都好好阅读下本篇文章,因为你有可能发现不一样的切入点来帮助你更加深入的了解 ...
- Linux命令(七)之上传/共享/挂载文件至Linux系统中
.personSunflowerP { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); ...
- Python入门:ChainMap 有效管理多个上下文
摘要: Python的ChainMap从collections模块提供用于管理多个词典作为单个的有效工具. 本文分享自华为云社区<从零开始学python | ChainMap 有效管理多个上下文 ...
- 解决win10快速访问不能取消固定
最近发现win10的快速访问不能取消固定,比如ftp和smb之类的都不能取消固定 最后百度了一下发现一个简易的方法: 在文件资源管理器地址栏输入:%APPDATA%\Microsoft\Windows ...
- hg的常用配置
hg的配置文件分为全局配置和每个Repo自己的配置,Ubuntu系统下全局配置文件是~/.hgrc,Win7系统下是C:\Users\chad\mercurial.ini,各repo的配置文件是$RE ...
- 拦截器HandlerInterceptorAdapter的postHandle和afterCompletion无法获取response返回值问题
缘起 有一个需求,在进入controller之前验证调用次数是否超过限制,在响应之后判断是否正常返回,对调用次数进行+1,发现带@RestController的类和带@ResponseBody的方法在 ...
- Python语言系列-10-数据库
MySQL 基础环境准备 readme.txt 作者:Alnk(李成果) 版本:v1.0 安装mysql数据库 略 创建student库 # mysql> create database stu ...
- Python对系统数据进行采集监控——psutil
大家好,我是辰哥- 今天给大家介绍一个可以获取当前系统信息的库--psutil 利用psutil库可以获取系统的一些信息,如cpu,内存等使用率,从而可以查看当前系统的使用情况,实时采集这些信息可以达 ...
- DVWA靶场之Command Injection(命令行注入)通关
Command Injection Low: <?php if( isset( $_POST[ 'Submit' ] ) ) { // Get input $target = $_REQUES ...