【Hadoop代码笔记】Hadoop作业提交之Job初始化
一、概要描述
在上一篇博文中主要描述了JobTracker和其几个服务(或功能)模块的接收到提交的job后的一些处理。其中很重要的一部分就作业的初始化。因为代码片段图的表达问题,本应该在上篇描述的内容,分开在本篇描述。
二、 流程描述
1. 代码也接上文的最后一个方法 EagerTaskInitializationListener的jobAdded方法把JobInProgress类型的job放到List<JobInProgress>类型的 jobInitQueue中,有个单独的线程会对新加入的每个job进行初始化,其初始化调用的方法就是JobInProgress的方法initTasks。
2. 在JobInProgress的方法initTasks方法中,会根据传入的作业分片创建对应数量的TaskInProgress类型的maptask,同时会创建TaskInProgress类型的指定数量的reducetask。
3. TaskInProgress的初始化是由其构造函数和构造函数中调用的init方法完成的。
三、代码详细
1. EagerTaskInitializationListener的内部InitJob线程的run方法。调用JobInProgress的初始化方法。
static class InitJob implements Runnable {
private JobInProgress job;
public InitJob(JobInProgress job) {
this.job = job;
}
public void run()
{
job.initTasks();
}
}
2. JobInProgress 类的initTasks方法。
主要流程:
1)根据读入的split确定map的数量,每个split一个map
2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
3)根据split的数量初始化maps
4)如果没有split,表示job已经成功结束。
5) 根据指定的reduce数量numReduceTasks创建reduce task
6)计算并且最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。
//1) 根据读入的split确定map的数量,每个split一个map
String jobFile = profile.getJobFile();
Path sysDir = new Path(this.jobtracker.getSystemDir());
FileSystem fs = sysDir.getFileSystem(conf);
DataInputStream splitFile =
fs.open(new Path(conf.get("mapred.job.split.file")));
JobClient.RawSplit[] splits;
splits = JobClient.readSplitFile(splitFile);
numMapTasks = splits.length; //2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
int maxTasks = jobtracker.getMaxTasksPerJob();
if (maxTasks > 0 && numMapTasks + numReduceTasks > maxTasks) {
throw new IOException(
"The number of tasks for this job " +
(numMapTasks + numReduceTasks) +
" exceeds the configured limit " + maxTasks);
} //3)根据split的数量初始化maps
maps = new TaskInProgress[numMapTasks];
for(int i=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] = new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
LOG.info("Input size for job "+ jobId + " = " + inputLength);
if (numMapTasks > 0) {
LOG.info("Split info for job:" + jobId + " with " +
splits.length + " splits:");
nonRunningMapCache = createCache(splits, maxLevel);
} this.launchTime = System.currentTimeMillis(); //4)如果没有split,表示job已经成功结束。 if (numMapTasks == 0) {
//设定作业的完成时间避免下次还会判断。
this.finishTime = this.launchTime;
status.setSetupProgress(1.0f);
status.setMapProgress(1.0f);
status.setReduceProgress(1.0f);
status.setCleanupProgress(1.0f);
status.setRunState(JobStatus.SUCCEEDED);
tasksInited.set(true);
JobHistory.JobInfo.logInited(profile.getJobID(),
this.launchTime, 0, 0);
JobHistory.JobInfo.logFinished(profile.getJobID(),
this.finishTime, 0, 0, 0, 0,
getCounters());
return;
} //5) 根据指定的reduce数量numReduceTasks创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i = 0; i < numReduceTasks; i++) {
reduces[i] = new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
nonRunningReduces.add(reduces[i]);
} // 6)计算最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。
completedMapsForReduceSlowstart =
(int)Math.ceil(
(conf.getFloat("mapred.reduce.slowstart.completed.maps",
DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) *
numMapTasks)); tasksInited.set(true);
}
3. TaskInProgress的构造函数
有构造MapTask的构造函数和构造ReduceTask的构造函数。分别是如下。其主要区别在于构造mapTask是要传入输入分片信息的RawSplit,而Reduce Task则不需要。两个构造函数都要调用init方法,进行其他的初始化。
public TaskInProgress(JobID jobid, String jobFile,
RawSplit rawSplit,
JobTracker jobtracker, JobConf conf,
JobInProgress job, int partition) {
this.jobFile = jobFile;
this.rawSplit = rawSplit;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.partition = partition;
this.maxSkipRecords = SkipBadRecords.getMapperMaxSkipRecords(conf);
setMaxTaskAttempts();
init(jobid);
}
public TaskInProgress(JobID jobid, String jobFile,
int numMaps,
int partition, JobTracker jobtracker, JobConf conf,
JobInProgress job) {
this.jobFile = jobFile;
this.numMaps = numMaps;
this.partition = partition;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.maxSkipRecords = SkipBadRecords.getReducerMaxSkipGroups(conf);
setMaxTaskAttempts();
init(jobid);
}
4. TaskInProgress的init方法。初始化写map和reduce类型task都需要的初始化信息。
void init(JobID jobId) {
this.startTime = System.currentTimeMillis();
this.id = new TaskID(jobId, isMapTask(), partition);
this.skipping = startSkipping();
}
完。
为了转载内容的一致性、可追溯性和保证及时更新纠错,转载时请注明来自:http://www.cnblogs.com/douba/p/hadoop_mapreduce_job_init.html。谢谢!
【Hadoop代码笔记】Hadoop作业提交之Job初始化的更多相关文章
- 【hadoop代码笔记】hadoop作业提交之汇总
一.概述 在本篇博文中,试图通过代码了解hadoop job执行的整个流程.即用户提交的mapreduce的jar文件.输入提交到hadoop的集群,并在集群中运行.重点在代码的角度描述整个流程,有些 ...
- 【hadoop代码笔记】Mapreduce shuffle过程之Map输出过程
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从 ...
- 【Hadoop代码笔记】目录
整理09年时候做的Hadoop的代码笔记. 开始. [Hadoop代码笔记]Hadoop作业提交之客户端作业提交 [Hadoop代码笔记]通过JobClient对Jobtracker的调用看详细了解H ...
- 【Hadoop代码笔记】Hadoop作业提交之客户端作业提交
1. 概要描述仅仅描述向Hadoop提交作业的第一步,即调用Jobclient的submitJob方法,向Hadoop提交作业. 2. 详细描述Jobclient使用内置的JobS ...
- 【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
一.概要描述 在上上一篇博文和上一篇博文中分别描述了jobTracker和其服务(功能)模块初始化完成后,接收JobClient提交的作业,并进行初始化.本文着重描述,JobTracker如何选择作业 ...
- 【hadoop代码笔记】Hadoop作业提交中EagerTaskInitializationListener的作用
在整理FairScheduler实现的task调度逻辑时,注意到EagerTaskInitializationListener类.差不多应该是job提交相关的逻辑代码中最简单清楚的一个了. todo: ...
- 【Hadoop代码笔记】Hadoop作业提交之JobTracker等相关功能模块初始化
一.概要描述 本文重点描述在JobTracker一端接收作业.调度作业等几个模块的初始化工作.想过模块的介绍会在其他文章中比较详细的描述.受理作业提交在下一篇文章中会进行描述. 为了表达的尽可能清晰一 ...
- 【Hadoop代码笔记】通过JobClient对Jobtracker的调用详细了解Hadoop RPC
Hadoop的各个服务间,客户端和服务间的交互采用RPC方式.关于这种机制介绍的资源很多,也不难理解,这里不做背景介绍.只是尝试从Jobclient向JobTracker提交作业这个最简单的客户端服务 ...
- Hadoop学习笔记——Hadoop经常使用命令
Hadoop下有一些经常使用的命令,通过这些命令能够非常方便操作Hadoop上的文件. 1.查看指定文件夹下的内容 语法: hadoop fs -ls 文件文件夹 2.打开某个已存在的文件 语法: h ...
- 【Hadoop代码笔记】Hadoop作业提交之JobTracker接收作业提交
一.概要描述 在上一篇博文中主要描述了JobTracker接收作业的几个服务(或功能)模块的初始化过程.本节将介绍这些服务(或功能)是如何接收到提交的job.本来作业的初始化也可以在本节内描述,但是涉 ...
随机推荐
- VMware中第一次启动mac遇到的错误及解决方案
本文部分参考 http://blog.sina.com.cn/s/blog_938d86e90100z5ep.html 虚拟机版本:VMware-workstation-full-7.1.3-3242 ...
- make clean vs make clobber
make is pretty smart, and picks up what has changed from the last build, so if you run repo sync and ...
- env1
给新手参考的Cadence Allegro快捷键 原文链接:http://www.eda365.com/thread-30935-1-1.html 发上我的快捷键给新手参考,我也是在LULU给我的EN ...
- POJ-3669 Meteor Shower(bfs)
http://poj.org/problem?id=3669 注意理解题意:有m颗行星将会落在方格中(第一象限),第i颗行星在ti时间会摧毁(xi,yi)这个点和四周相邻的点,一个人开始在原点,然后只 ...
- Android模拟器使用教程
Using the Emulator In this document Overview Android Virtual Devices and the Emulator Starting and S ...
- windows 创建SSH Key
1. 安装git,从程序目录打开 "Git Bash" (百度或用这个连接http://pan.baidu.com/s/1dDJCx9n 下载) 2. 键入命令:ssh-keyge ...
- JS获取系统的指定定年月日
/** * 获取系统当前时间 */ function getNowYearMouth(){ var date=new Date; var nowYearMouth=date.getMonth()+1; ...
- Qt之QHeaderView自定义排序(终极版)
简述 本节主要解决自定义排序衍生的第二个问题-将整形显示为字符串,而排序依然正常. 下面我们介绍三种方案: 委托绘制 用户数据 辅助列 很多人也许会有疑虑,平时都用delegate来绘制各种按钮.图标 ...
- Annotation(jdk5.0注解)复习(转自http://3w_cnblogs_com/pepcod/)
package annotation.test; import java.lang.annotation.ElementType; import java.lang.annotation.Retent ...
- 理解matplotlib绘图
matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化 ...