opencl gauss filter优化(三)
1.根据前两次的最终结果:
使用普通buffer,Horizontal 5ms, Vertical 17 ms
使用image buffer:Horizontal 9.4ms, Vertical 6.4 ms
那么使用 Horizontal普通buffer,Vertical image buffer 组合方式的话,是不是时间最少?只是Intermediate image仍使用image对象,Horizontal kernel中的写操作需要改变。
结果: Horizontal 的最大local_work_size只能是32, Horizontal 增至8ms, Vertical 6.4ms
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; #define r(xc,y) read_imagef( source, sampler, (int2) (xc, y) ).x #define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 );\
write_imagef( dest, (int2) (x+, y), sum.s2 );write_imagef( dest, (int2) (x+, y), sum.s3 );\
write_imagef( dest, (int2) (x+, y), sum.s4 );write_imagef( dest, (int2) (x+, y), sum.s5 );\
write_imagef( dest, (int2) (x+, y), sum.s6 );write_imagef( dest, (int2) (x+, y), sum.s7 );\
write_imagef( dest, (int2) (x+, y), sum.s8 );write_imagef( dest, (int2) (x+, y), sum.s9 );\
write_imagef( dest, (int2) (x+, y), sum.sa );write_imagef( dest, (int2) (x+, y), sum.sb );\
write_imagef( dest, (int2) (x+, y), sum.sc );write_imagef( dest, (int2) (x+, y), sum.sd );\
write_imagef( dest, (int2) (x+, y), sum.se );write_imagef( dest, (int2) (x+, y), sum.sf ); __kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
__write_only image2d_t dest, // Intermediate dest image
const int imgWidth , // Image width
const int imgHeight)
{
const int y = get_global_id();
if(y>=(imgHeight))
return;
const uchar m_nRightShiftNum = ;
const uchar Rounding = ( << (m_nRightShiftNum - ));
const uchar m_nFilter[] = {,,,,,,,,,,}; const int s = ;
const int nStart = ;
const int nWidth = imgWidth; __global const uchar* pInLine = source + y*nWidth; int j;
for(j = ; j < nStart; j ++)
{
ushort sum = ; for (int m = ; m<s / ; m++)
{
int k1 = (j + m - nStart);
k1 = k1< ? -k1 : k1; int k2 = (j + nStart - m );
sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
}
sum += pInLine[j] * m_nFilter[s / ];
//sum = (sum + Rounding) >> 8;
write_imagef( dest, (int2) (j, y), convert_float(sum)/(255.0*) );
} ushort16 line0 = convert_ushort16(vload16(,pInLine+j-nStart));
for ( ; (j+)<= (nWidth - nStart); j+=)
{
ushort16 line1 = convert_ushort16(vload16(,pInLine+j-nStart+)); ushort16 temp0;
ushort16 temp1;
temp0 = line0;
temp1.s0123 = line0.sabcd;
temp1.s45 = line0.sef;
temp1.s67 = line1.s01;
temp1.s89abcdef = line1.s23456789;
ushort16 sum = ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s0;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s9;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s1;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s8;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s2;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s7;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s3;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s6;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s4;
sum += ( temp0 ) * m_nFilter[]; line0 = line1; float16 sum2 = (convert_float16(sum))/(255.0*);
w16(j,y,sum2 );
} for( ; j < nWidth; j ++)
{
ushort sum = ; for (int m = ; m<s / ; m++)
{
int k1 = (j + m - nStart); int k2 = (j + nStart - m );
k2 = k2 >= nWidth ? * nWidth - - k2 : k2;
sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
}
sum += pInLine[j] * m_nFilter[s / ];
//sum = (sum + Rounding) >> m_nRightShiftNum;
write_imagef( dest, (int2) (j, y), convert_float(sum)/(255.0*) );
} }
2.使用各种办法,最终也只能降到13.7ms,Horizontal 7.5, Vertical 6ms,最终代码如下.
更新:H和V都 去掉__attribute__ 属性,local_work_size都设置NULL,让opencl自己选择,H 的最大local_work_size又变回了64,总时间13ms.因为在LG G4,adreno 418上运行却需要40ms,在adreno 418上的local_work_size最大可以是1024,却被强制设成了32.
a.使用mad指令做sum乘加,结果有误差,时间也略增.fma 是无限精度,mad 是快速方法,结果是近似值。
b.使用 pInTemp 读fisrt 16 bytes,避免重复读取,有0.x ms的优势
c.边界使用了mirror repeat
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; #define r(xc,y) read_imagef( source, sampler, (int2) (xc, y) ).x #define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 );\
write_imagef( dest, (int2) (x+, y), sum.s2 );write_imagef( dest, (int2) (x+, y), sum.s3 );\
write_imagef( dest, (int2) (x+, y), sum.s4 );write_imagef( dest, (int2) (x+, y), sum.s5 );\
write_imagef( dest, (int2) (x+, y), sum.s6 );write_imagef( dest, (int2) (x+, y), sum.s7 );\
write_imagef( dest, (int2) (x+, y), sum.s8 );write_imagef( dest, (int2) (x+, y), sum.s9 );\
write_imagef( dest, (int2) (x+, y), sum.sa );write_imagef( dest, (int2) (x+, y), sum.sb );\
write_imagef( dest, (int2) (x+, y), sum.sc );write_imagef( dest, (int2) (x+, y), sum.sd );\
write_imagef( dest, (int2) (x+, y), sum.se );write_imagef( dest, (int2) (x+, y), sum.sf ); //line0 start from j-5,line1 from j-5+16
#define GaussianShift16 {\
temp0 = line0;\
temp1.s0123 = line0.sabcd;\
temp1.s45 = line0.sef;\
temp1.s67 = line1.s01;\
temp1.s89abcdef = line1.s23456789;\
sum = ( temp0 + temp1 ) * m_nFilter[];\
temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
temp0.sf = line1.s0;\
temp1.s0123456789abcdef = temp1.s00123456789abcde;\
temp1.s0 = line0.s9;\
sum += ( temp0 + temp1 ) * m_nFilter[];\
temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
temp0.sf = line1.s1;\
temp1.s0123456789abcdef = temp1.s00123456789abcde;\
temp1.s0 = line0.s8;\
sum += ( temp0 + temp1 ) * m_nFilter[];\
temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
temp0.sf = line1.s2;\
temp1.s0123456789abcdef = temp1.s00123456789abcde;\
temp1.s0 = line0.s7;\
sum += ( temp0 + temp1 ) * m_nFilter[];\
temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
temp0.sf = line1.s3;\
temp1.s0123456789abcdef = temp1.s00123456789abcde;\
temp1.s0 = line0.s6;\
sum += ( temp0 + temp1 ) * m_nFilter[];\
temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
temp0.sf = line1.s4;\
sum += ( temp0 ) * m_nFilter[];} __kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
__write_only image2d_t dest, // Intermediate dest image
const int imgWidth , // Image width
const int imgHeight)
{
const int y = get_global_id();
if(y>=(imgHeight))
return;
const uchar m_nFilter[] = {,,,,,,,,,,}; const int s = ;
const int nStart = ; __global const uchar* pInLine = source + y*imgWidth; int j;
uchar pInTemp[];
*( (uint4*)(pInTemp) ) = *((__global uint4*)(pInLine)) ;//first 16 bytes
for(j = ; j < nStart; j ++)
{
ushort sum = ;
for (int m = ; m<s / ; m++)
{
int k1 = (j + m - nStart);
k1 = k1< ? -k1 : k1; int k2 = (j + nStart - m );
sum += (pInTemp[k1] + pInTemp[k2])*m_nFilter[m];
}
sum += pInTemp[j] * m_nFilter[s / ];
write_imagef( dest, (int2) (j, y), convert_float(sum)/(255.0*) );
} ushort16 temp0;
ushort16 temp1;
ushort16 sum;
ushort16 line0,line1;
line0 = convert_ushort16(*((uchar16*)pInTemp));
for ( ; j< (imgWidth-); j+=)
{
line1 = convert_ushort16(vload16(,pInLine+j-nStart+));//convert_ushort16( as_uchar16(*((__global uint4*)(pInLine+j-nStart+16))) ) ; GaussianShift16
line0 = line1; float16 sum2 = (convert_float16(sum))/(255.0*);
w16(j,y,sum2 );
} {
//last 16 pixel,some pixels may caculate again
j = imgWidth-;
line0 = convert_ushort16(vload16(,pInLine+j-nStart));
//mirror repeat read
line1.s0123 = convert_ushort4( vload4(,pInLine+imgWidth-nStart) );
line1.s4567 = (ushort4)( pInLine[imgWidth-],line1.s3,line1.s21 ) ;
line1.s89 = (ushort2)(line1.s0,line0.sf); GaussianShift16
float16 sum2 = (convert_float16(sum))/(255.0*);
w16(j,y,sum2 );
}
} __kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image
__write_only image2d_t dest,
const int imgWidth ,
const int imgHeight)
{
const int x = get_global_id();
if(x>=(imgWidth))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; #define rv16(x,y) (float16)( r(x,y),r(x,y+1),r(x,y+2),r(x,y+3),r(x,y+4),r(x,y+5),r(x,y+6),r(x,y+7),\
r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+)) #define wv16(x,y,sum) write_imagef( dest, (int2) (x,y), sum.s0 );write_imagef( dest, (int2) (x,y+1), sum.s1 );\
write_imagef( dest, (int2) (x,y+), sum.s2 );write_imagef( dest, (int2) (x,y+), sum.s3 );\
write_imagef( dest, (int2) (x,y+), sum.s4 );write_imagef( dest, (int2) (x,y+), sum.s5 );\
write_imagef( dest, (int2) (x,y+), sum.s6 );write_imagef( dest, (int2) (x,y+), sum.s7 );\
write_imagef( dest, (int2) (x,y+), sum.s8 );write_imagef( dest, (int2) (x,y+), sum.s9 );\
write_imagef( dest, (int2) (x,y+), sum.sa );write_imagef( dest, (int2) (x,y+), sum.sb );\
write_imagef( dest, (int2) (x,y+), sum.sc );write_imagef( dest, (int2) (x,y+), sum.sd );\
write_imagef( dest, (int2) (x,y+), sum.se );write_imagef( dest, (int2) (x,y+), sum.sf ); float16 temp0;
float16 temp1;
float16 sum;
float16 line0,line1; line0 = rv16(x,-);
line0.s0123 = line0.sa987;//mirror repeat
line0.s4 = line0.s6;
int j;
for(j=;j<imgHeight-;j+=){
line1 = rv16(x,j-+); GaussianShift16 line0 = line1;
wv16(x,j,sum );
}
//last 16 pixel,some pixels may caculate again if imgHeight not 16 bytes align
j = imgHeight-;
line0 = rv16(x,j-);
//mirror repeat read
const int y = imgHeight-;
line1.s0123 = (float4)( r(x,y),r(x,y+),r(x,y+),r(x,y+) );
line1.s4567 = (float4)( r(x,y+),line1.s3,line1.s21 );
line1.s89 = (float2)(line1.s0,line0.sf); GaussianShift16
wv16(x,j,sum );
}
总结:1.local_work_size 对时间的影响比较大,有时使用NULL默认的就可以,有时需要一个个去试。
使用vector 类型,local memory,kernel代码结构 都会对 local_work_size 最大值有影响
2.profile中的wait time可能是读写memory还有其它的等待时间,rum time是ALU计算执行的时间。
3.避免对global memory的重复读写,预先缓存下来再用
4.image buffer的读写比普通buffer快,也没有按行按列读写的效率差异.尽量使用image buffer
5.read/write_imageui 并不比 read/write_imagef 快,一般就使用float
6.write 比read 要慢很多,内存未对齐也会慢些
7.使用vector 读写,计算 都会更快.image buffer虽然是单点读,组合成vector计算也更快.
8.half类型存在精度问题,会引入误差,在这里也不比float快
9.如果不确定local_work_size,就设置成NULL,让opencl自己选择。
不同的GPU 上local_work_size最大值不一样,比如这个kernel 在Adreno 330上最大64,在adreno 418上最大1024.
opencl gauss filter优化(三)的更多相关文章
- opencl gauss filter优化(二)
1.buffer使用image的方式:Horizontal 与 Vertical 算法一样, 共需30ms,wait time 19ms. const sampler_t sampler = CLK_ ...
- opencl gauss filter优化(一)
Platform: LG G3, Adreno 330 ,img size 3264x2448 C code neon GPU 300 60 29 单位:ms 1. 目前按如下行列分解的方式最快29m ...
- Anisotropic gauss filter
最近一直在做版面分析,其中文本行检测方面,许多文章涉及到了Anigauss也就是各向异性高斯滤波. 顾名思义,简单的理解就是参数不同的二维高斯滤波. 在文章Fast Anisotropic Gauss ...
- MySQL优化三(InnoDB优化)
body { font-family: Helvetica, arial, sans-serif; font-size: 14px; line-height: 1.6; padding-top: 10 ...
- App架构师实践指南六之性能优化三
App架构师实践指南六之性能优化三 2018年08月02日 13:57:57 nicolelili1 阅读数:190 内存性能优化1.内存机制和原理 1.1 内存管理内存时一个基础又高深的话题,从 ...
- 【SQL server初级】数据库性能优化三:程序操作优化
数据库优化包含以下三部分,数据库自身的优化,数据库表优化,程序操作优化.此文为第三部分 数据库性能优化三:程序操作优化 概述:程序访问优化也可以认为是访问SQL语句的优化,一个好的SQL语句是可以减少 ...
- MySQL性能优化(三):索引
原文:MySQL性能优化(三):索引 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/vbi ...
- js加载优化三
Javascript性能优化之异步加载和执行 Author:小欧2013-09-17 随着科技的发展,如今的网站和五六年前相比,现在的人们对web的要求越来越高了,用户体验,交互效果,视觉效果等等都有 ...
- Android 性能优化 三 布局优化ViewStub标签的使用
小黑与小白的故事,通过虚拟这两个人物进行一问一答的形式来共同学习ViewStub的使用 小白:Hi,小黑,ViewStub是什么?听说能够用来进行布局优化. 小黑:ViewStub 是一个隐藏的,不占 ...
随机推荐
- LInux ugo权限详解[修]
Linux 中的用户和组是用来控制使用者或者进程可以或者不可以使用哪些资源和硬件,是Linux权限控制最基本的方式. 用户和组可以看一下上一章的部分,先来看一下权限. 一.权限概览 在Linux下,使 ...
- 如何使用同一个Action中的不同方法
如何使用同一个Action中的不同方法 1.使用Action的DMI(Dynamic Method Invocation--动态方法调用) (1)动态方法调用: 表单元素的action不是直接为某个A ...
- 第一课 android环境搭建
android环境搭建需要的工具: 1.JDK 2.eclipse 3.SDK 4.ADT
- Python3基础 count 返回指定元素在列表中的个数
镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...
- .Net连接数据库-曾,删,改,查(AOD.Net)
连接数据库 static void Main(string[] args) { //SqlConnection conn = new SqlConnection();//实例化 //conn.Conn ...
- 三HttpServletResponse对象介绍(1)
转载自http://www.cnblogs.com/xdp-gacl/p/3789624.html Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象 ...
- 可是把ie67下面的bug改好了,其实很简单,ie67下面取出来的字符串是带有空格的,不知道为什么
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- asynchronous vs non-blocking
http://stackoverflow.com/questions/2625493/asynchronous-vs-non-blocking In many circumstances they a ...
- Oracle ——————建表、select、视图
--建表 -- 关键字 : create -- 用法 : /* create table table_name ( lie1_name 数据类型 是否为空, lie2_name 数据类型 是否为空, ...
- JAVA运算符和优先级
1.算术运算符: ++ 和 -- 既可以出现在操作数的左边,也可以出现在右边,但结果是不同,如: ①int a=5: int b=a++: #先把a赋给b,a再自增 ②int a=5: int b=+ ...