原创博客:转载请标明出处:http://www.cnblogs.com/zxouxuewei/

关键点:是多个方向上亮度变化强的区域。

opencv:版本是2.4.

侦测器:opencv有大量的关键点侦测器,我们本次采用goodFeaturesToTrack()。

相应的启动文件为:good_features.launch

侦测器返回的关键点变量:

    maxCorners : 设置最多返回的关键点数量。
    qualityLevel : 反应一个像素点强度有多强才能成为关键点。

    minDistance : 关键点之间的最少像素点。
    blockSize : 计算一个像素点是否为关键点时所取的区域大小。
    useHarrisDetector :使用原声的 Harris 角侦测器或最小特征值标准。
    k : 一个用在Harris侦测器中的自由变量。

首先确保你的kinect驱动或者uvc相机驱动能正常启动:(如果你使用的是kinect,请运行openni驱动)

roslaunch openni_launch openni.launch

  如果你没有安装kinect深度相机驱动,请看我前面的博文。

然后运行下面的launch文件:

roslaunch rbx1_vision good_features.launch

当视频出现时,通过鼠标画矩形将图像中的某个对象框住。这个矩形表示所选的区域,你会看到这个区域中会出现一些绿色的小圆点,他们是goodFeaturesToTrack()。侦测器在该区域中发现的关键点,

以下是我的运行结果:

下面我们看看代码,主要是good_features.py脚本。

#!/usr/bin/env python

""" good_features.py - Version 1.1 2013-12-20
Locate the Good Features To Track in a video stream. Created for the Pi Robot Project: http://www.pirobot.org
Copyright (c) Patrick Goebel. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version of the License, or
(at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details at: http://www.gnu.org/licenses/gpl.html
""" import rospy
import cv2
import cv2.cv as cv
from rbx1_vision.ros2opencv2 import ROS2OpenCV2
import numpy as np class GoodFeatures(ROS2OpenCV2):
def __init__(self, node_name):
super(GoodFeatures, self).__init__(node_name) # Do we show text on the display?
self.show_text = rospy.get_param("~show_text", True) # How big should the feature points be (in pixels)?
self.feature_size = rospy.get_param("~feature_size", ) # Good features parameters
self.gf_maxCorners = rospy.get_param("~gf_maxCorners", )
self.gf_qualityLevel = rospy.get_param("~gf_qualityLevel", 0.02)
self.gf_minDistance = rospy.get_param("~gf_minDistance", )
self.gf_blockSize = rospy.get_param("~gf_blockSize", )
self.gf_useHarrisDetector = rospy.get_param("~gf_useHarrisDetector", True)
self.gf_k = rospy.get_param("~gf_k", 0.04) # Store all parameters together for passing to the detector
self.gf_params = dict(maxCorners = self.gf_maxCorners,
qualityLevel = self.gf_qualityLevel,
minDistance = self.gf_minDistance,
blockSize = self.gf_blockSize,
useHarrisDetector = self.gf_useHarrisDetector,
k = self.gf_k) # Initialize key variables
self.keypoints = list()
self.detect_box = None
self.mask = None def process_image(self, cv_image):
try:
# If the user has not selected a region, just return the image
if not self.detect_box:
return cv_image # Create a greyscale version of the image
grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) # Equalize the histogram to reduce lighting effects
grey = cv2.equalizeHist(grey) # Get the good feature keypoints in the selected region
keypoints = self.get_keypoints(grey, self.detect_box) # If we have points, display them
if keypoints is not None and len(keypoints) > :
for x, y in keypoints:
cv2.circle(self.marker_image, (x, y), self.feature_size, (, , , ), cv.CV_FILLED, , ) # Process any special keyboard commands
if self.keystroke != -:
try:
cc = chr(self.keystroke & ).lower()
if cc == 'c':
# Clear the current keypoints
keypoints = list()
self.detect_box = None
except:
pass
except:
pass return cv_image def get_keypoints(self, input_image, detect_box):
# Initialize the mask with all black pixels
self.mask = np.zeros_like(input_image) # Get the coordinates and dimensions of the detect_box
try:
x, y, w, h = detect_box
except:
return None # Set the selected rectangle within the mask to white
self.mask[y:y+h, x:x+w] = # Compute the good feature keypoints within the selected region
keypoints = list()
kp = cv2.goodFeaturesToTrack(input_image, mask = self.mask, **self.gf_params)
if kp is not None and len(kp) > :
for x, y in np.float32(kp).reshape(-, ):
keypoints.append((x, y)) return keypoints if __name__ == '__main__':
try:
node_name = "good_features"
GoodFeatures(node_name)
rospy.spin()
except KeyboardInterrupt:
print "Shutting down the Good Features node."
cv.DestroyAllWindows()

使用GoodFeaturesToTrack进行关键点检测---29的更多相关文章

  1. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  2. PCL—低层次视觉—关键点检测(NARF)

    关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有 ...

  3. PCL—低层次视觉—关键点检测(rangeImage)

    关键点又称为感兴趣的点,是低层次视觉通往高层次视觉的捷径,抑或是高层次感知对低层次处理手段的妥协. ——三维视觉关键点检测 1.关键点,线,面 关键点=特征点: 关键线=边缘: 关键面=foregro ...

  4. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  5. 用keras实现人脸关键点检测(2)

    上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...

  6. keras实现简单CNN人脸关键点检测

    用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow  1.4.0 h5py ...

  7. 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支

    下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...

  8. 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)

    1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...

  9. PCL—低层次视觉—关键点检测(iss&Trajkovic)

    关键点检测往往需要和特征提取联合在一起,关键点检测的一个重要性质就是旋转不变性,也就是说,物体旋转后还能够检测出对应的关键点.不过说实话我觉的这个要求对机器人视觉来说是比较鸡肋的.因为机器人采集到的三 ...

随机推荐

  1. [开发笔记]-获取歌曲ID3信息

    ID3介绍: ID3,一般是位于一个mp3文件的开头或末尾的若干字节内,附加了关于该mp3的歌手,标题,专辑名称,年代,风格等信息,该信息就被称为ID3信息,ID3信息分为两个版本,v1和v2版. 获 ...

  2. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  3. Android 之 数据存储

    在Android操作系统中,提供了5种数据存储方式:SharedPreferences存储,文件存储,SQLite数据库存储,ContentProvider存储和网络存储. 一.SharedPrefe ...

  4. 支持.NET和移动设备的XLS读写控件XLSReadWriteII下载地址及介绍

    原文来自龙博方案网http://www.fanganwang.com/product/3085转载请注明出处 读写任何单元值 数字型.字符型.布尔型以及错误型.但是你了解日期和时间型单元吗?在Exce ...

  5. OpenCV之响应鼠标(二):函数cvSetMouseCallback()和其副程式onMouse()的使用(OpenCV2.4.5)

    每當滑鼠在視訊視窗介面點擊一下的時候,都會有固定三個動作 1.點擊(Click) 2.放開(Down)3.滑動(move) 因此,程式執行滑鼠在點擊的時候onMouse()都會連續跑三次,代表滑鼠在點 ...

  6. 直接拿来用的10个PHP代码片段

    PHP是一种HTML内嵌式的语言,是一种在服务器端执行的嵌入HTML文档的脚本语言.PHP拥有数以百计的基本功能,支持上千种扩展.这些功能都被很好的加载在PHP站点上,但内置的库有各种各样的命名.在P ...

  7. 面向对象之prototype,__proto__

    var person = function(name) { this.name = name }; person.prototype.getName = function() { return thi ...

  8. Java基础毕向东day02

    1. 常量 null 等特殊 2.标识符 数字-字母-下划线,数字不能开头 3.二进制 1> 二进制计算方法. 2>常用二进制. 1        1      0       0   1 ...

  9. table td的宽度详解

    前言:一直总觉得td的宽度好难驾驭,但万事万物总是有规律的.就像亮剑说的:不用因为怕八路就敬而远之,应该靠上去,熟悉他们,了解他们.   正文:           Table只有Table的宽度是可 ...

  10. hdu 1069

    //Accepted 264 KB 0 ms //每种block只有三种方法,且每种放法至多放一次 //规定三条边的顺序后 //把所有的block按x递增排序,x相同则按y递增排序 //然后dp // ...