A.Lucky Conversion

题意

  • 给定两个长度为 \(N(N \le 10^5)\) 且由4和7构成的 \(a, b\)串
  • 对 \(a\) 可以有两种操作:
  1. 交换两个位置的字符;
  2. 改变一个位置的字符。
  • 求最少到操作次数,使得两串相同。

思路

  • 统计需要改变4的个数和改变7的个数。
  • 两个数到最小值表示两两交换使得对应位相同,剩下的只有其中一种,再进行操作2使得对应位相同。
  • 也就是取两者最大值即答案。

B. Lucky Number 2

题意

  • 用 \(cnt(x)\) 表示串 \(x\) 在一个串 \(s\) 中出现到次数。
  • 现给出 \(cnt(4), cnt(7), cnt(47), cnt(74)\),求满足这些条件的最小的串 \(s\),串 \(s\) 仅包含4和7。

思路

  • 47和74只出现在4、7交界处,即如果我们把连续的4和连续的7看成4和7,则最后的串到形式为4、7交替出现,例如……47474……。
  • 显然,47和74的个数差值不会超过1。
  • 那么只要根据47和74的3种差值构造,多余的4插到前面,7则放到后面。

C. Lucky Subsequence

题意

  • 给定 \(N(N \le 10^5)\) 个数 \(a_i(1 \le a_i \le 10^9)\) ,其中仅由4、7构成的数是幸运数。
  • 求出长度为 \(K\) 的子序列,满足序列中没有相同的幸运数的方案数,结果对 \(10^9 + 7\) 取模。
  • 只要序列选取到位置不同,则认为两种方案不同。

思路

  • 在 \(10^9\) 范围内幸运数的个数就1000个左右。
  • 用 \(f(i,j)\) 表示前 \(i\) 种幸运数中取 \(j\) 种放入集合中的权值积之和,转移: \[f(i,j) = f(i - 1, j) + c_i f(i - 1, j - 1) \] \(c_i\) 表示第 \(i\)种幸运数出现的次数。
  • 假设取了 \(j\) 个幸运数,则从非幸运数集合中取 \(K - j\) 个放入集合即可。

D. Lucky Pair

题意

  • 给一个长为 \(N(N \le 10^5)\) 的序列。
  • 其中幸运数的个数不超过 \(10^3\) 。
  • 求 \([l_1,r_1]\) 和 \([l_2, r_2]\) 的对数,满足 \(l_1 \le r_1 \lt l_2 \le r_2\),且两个区间没有幸运数的交集,就是对于每种幸运数最多只能出现在一个区间中。

思路

  • 可以用总方案数 \(-\) 不合法的方案数。
  • 总方案数 = \(\binom{N}{4} + 2\binom{N}{3} + \binom{N}{2}\)
  • 假设已经得到了左区间 \([l_1, r_1]\) ,那么右半部分 \((r_1, n]\) 会被lucky number分割成若干的区间,使得这些小区间不包含lucky number。
  • 先固定左区间的右端点 \(r_1\),然后从大到小枚举左端点 \(l_1\) ,右半部分 \((r_1, n]\) 区间会发生变化,当且仅当 \(l_1\) 是lucky number并且在 \((l_1, r_1]\) 未出现,所以我们只要枚举lucky number的位置即可。
  • 考虑右半部分新增的分割点,假设为 \(p\) ,\(pre\)表示 \(p\) 的前一个分割点,\(nxt\)为后一个。那么新增的不合法右区间为包含 \(p\) 的且不包含\(pre,nxt\)的区间。
  • 由于有非lucky number的存在,所以还要考虑左右端点不是lucky number的扩展。

E. Lucky Queries

题意

  • 给一个长为 \(N(N \le 10^6)\) 且由4、7构成的串 \(s\) 。
  • 有 \(M(M \le 3 \times 10^5)\) 次操作:
  1. switch l r:将区间 \([l, r]\) 的 \(4 \to 7, 7 \to 4\) 。
  2. count:求串s的最长上升子序列。

思路

  • 将4看成0, 7看成1
  • 线段树维护区间0的个数 \(c_0\), 1的个数 \(c_1\), 最长上升子序列长度 \(lis\), 下降 \(lds\)。

Codeforces Round #104 (Div. 1)的更多相关文章

  1. Codeforces Round #456 (Div. 2)

    Codeforces Round #456 (Div. 2) A. Tricky Alchemy 题目描述:要制作三种球:黄.绿.蓝,一个黄球需要两个黄色水晶,一个绿球需要一个黄色水晶和一个蓝色水晶, ...

  2. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  3. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  4. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  5. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  6. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  7. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  8. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  9. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

随机推荐

  1. tornado介绍

    一.定义 tornado是一个异步非阻塞模型的服务器(tcp/http).web框架. 二.特性 1.高并发 原因:其一,网络事件循环部分根据操作系统选择最高效的,如Linux会是epoll: 其二, ...

  2. Android 微信分享图文资料

    上个项目做Android的微信分享,需要分享的内容有图片有文字,看了微信分享的SDK,貌似没有这个API,在网上搜了好久,总算找到解决方法了,直接上代码: public void sendReq(Co ...

  3. Fragment 切换问题

    public void switchContent(Fragment fragment) { if(mContent != fragment) { mContent = fragment; mFrag ...

  4. Asp.Net应用运行原理

    一.运行原理图 二.对于HttpModule和HttpHandler的概念可能还不是很清楚,请先看Asp.Net应用生命周期.RAR 或者 Asp.Net深入解析 第四章,流程图太大无法粘贴 三.传智 ...

  5. 03-树2 Tree Traversals Again

    这题是第二次做了,两次都不是独立完成,不过我发现我第一次参考的程序,也是参考老师(陈越)的范例做出来的.我对老师给的做了小幅修改,因为我不想有全局变量的的存在,所以我多传了三个参数进去.正序遍历每次都 ...

  6. Ubuntu 14.10 下网络流量实时监控ifstat iftop命令详解

    ifstat 介绍 ifstat工具是个网络接口监测工具,比较简单看网络流量 实例 默认使用 #ifstat eth0 eth1 KB/s in KB/s out KB/s in KB/s out 0 ...

  7. (转)面向移动设备的HTML5开发框架

    (原)http://www.cnblogs.com/itech/archive/2013/07/27/3220352.html 面向移动设备的HTML5开发框架   转自:http://blogrea ...

  8. postgreSQL9.1忘记postgres用户密码怎么办

    在网络上找了一篇文章http://www.linuxidc.com/Linux/2010-04/25232.htm,如下: Ubuntu 9.10下PostgreSQL 8.4忘记密码的解决方法 Ub ...

  9. C++面向过程解决三阶行列式问题

    #include<iostream> #include <cstdlib> using namespace std; int print() { cout<<&qu ...

  10. JQuery源码分析(二)

    立即调用表达式: 任何库与框架设计的第一个要点就是解决命名空间与变量污染的问题.jQuery就是利用了JavaScript函数作用域的特性,采用立即调用表达式包裹了自身的方法来解决这个问题. jQue ...