sequence2

Problem Description
Given an integer array bi with a length of n, please tell me how many exactly different increasing subsequences.

P.S. A subsequence bai(1≤i≤k) is an increasing subsequence of sequence bi(1≤i≤n) if and only if 1≤a1<a2<...<ak≤n and ba1<ba2<...<bak.
Two sequences ai and bi is exactly different if and only if there exist at least one i and ai≠bi.

 
Input
Several test cases(about 5)

For each cases, first come 2 integers, n,k(1≤n≤100,1≤k≤n)

Then follows n integers ai(0≤ai≤109)

 
Output
For each cases, please output an integer in a line as the answer.
 
Sample Input
3 2
1 2 2
3 2
1 2 3
 
Sample Output
2
3
 
题解:我们可以通过dp[i][j]dp[i][j]表示第ii个数,当前这个数为序列中的第jj个数的方案总数。 转移为dp[i][j] = sum{dp[k][j-1]}(k < i, b_k < b_i)dp[i][j]=sumdp[k][j−1](k<i,b​k​​<b​i​​)。 本题需要高精度。
 
//
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0) const int inf=~0u>>;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** #define MAX_L 405 //最大长度,可以修改 class bign
{
public:
int len, s[MAX_L];//数的长度,记录数组
//构造函数
bign();
bign(const char*);
bign(int);
bool sign;//符号 1正数 0负数
string toStr() const;//转化为字符串,主要是便于输出
friend istream& operator>>(istream &,bign &);//重载输入流
friend ostream& operator<<(ostream &,bign &);//重载输出流
//重载复制
bign operator=(const char*);
bign operator=(int);
bign operator=(const string);
//重载各种比较
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//重载四则运算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign&);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign&);
bign operator*(const bign &)const;
bign operator*(const int num)const;
bign operator*=(const bign&);
bign operator/(const bign&)const;
bign operator/=(const bign&);
//四则运算的衍生运算
bign operator%(const bign&)const;//取模(余数)
bign factorial()const;//阶乘
bign Sqrt()const;//整数开根(向下取整)
bign pow(const bign&)const;//次方
//一些乱乱的函数
void clean();
~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b bign::bign()
{
memset(s, , sizeof(s));
len = ;
sign = ;
} bign::bign(const char *num)
{
*this = num;
} bign::bign(int num)
{
*this = num;
} string bign::toStr() const
{
string res;
res = "";
for (int i = ; i < len; i++)
res = (char)(s[i] + '') + res;
if (res == "")
res = "";
if (!sign&&res != "")
res = "-" + res;
return res;
} istream &operator>>(istream &in, bign &num)
{
string str;
in>>str;
num=str;
return in;
} ostream &operator<<(ostream &out, bign &num)
{
out<<num.toStr();
return out;
} bign bign::operator=(const char *num)
{
memset(s, , sizeof(s));
char a[MAX_L] = "";
if (num[] != '-')
strcpy(a, num);
else
for (int i = ; i < strlen(num); i++)
a[i - ] = num[i];
sign = !(num[] == '-');
len = strlen(a);
for (int i = ; i < strlen(a); i++)
s[i] = a[len - i - ] - ;
return *this;
} bign bign::operator=(int num)
{
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
} bign bign::operator=(const string num)
{
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
} bool bign::operator<(const bign &num) const
{
if (sign^num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - ; i >= ; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
} bool bign::operator>(const bign&num)const
{
return num < *this;
} bool bign::operator<=(const bign&num)const
{
return !(*this>num);
} bool bign::operator>=(const bign&num)const
{
return !(*this<num);
} bool bign::operator!=(const bign&num)const
{
return *this > num || *this < num;
} bool bign::operator==(const bign&num)const
{
return !(num != *this);
} bign bign::operator+(const bign &num) const
{
if (sign^num.sign)
{
bign tmp = sign ? num : *this;
tmp.sign = ;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = ;
int temp = ;
for (int i = ; temp || i < (max(len, num.len)); i++)
{
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % ;
temp = t / ;
}
result.sign = sign;
return result;
} bign bign::operator++()
{
*this = *this + ;
return *this;
} bign bign::operator++(int)
{
bign old = *this;
++(*this);
return old;
} bign bign::operator+=(const bign &num)
{
*this = *this + num;
return *this;
} bign bign::operator-(const bign &num) const
{
bign b=num,a=*this;
if (!num.sign && !sign)
{
b.sign=;
a.sign=;
return b-a;
}
if (!b.sign)
{
b.sign=;
return a+b;
}
if (!a.sign)
{
a.sign=;
b=bign()-(a+b);
return b;
}
if (a<b)
{
bign c=(b-a);
c.sign=false;
return c;
}
bign result;
result.len = ;
for (int i = , g = ; i < a.len; i++)
{
int x = a.s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= ) g = ;
else
{
g = ;
x += ;
}
result.s[result.len++] = x;
}
result.clean();
return result;
} bign bign::operator * (const bign &num)const
{
bign result;
result.len = len + num.len; for (int i = ; i < len; i++)
for (int j = ; j < num.len; j++)
result.s[i + j] += s[i] * num.s[j]; for (int i = ; i < result.len; i++)
{
result.s[i + ] += result.s[i] / ;
result.s[i] %= ;
}
result.clean();
result.sign = !(sign^num.sign);
return result;
} bign bign::operator*(const int num)const
{
bign x = num;
bign z = *this;
return x*z;
}
bign bign::operator*=(const bign&num)
{
*this = *this * num;
return *this;
} bign bign::operator /(const bign&num)const
{
bign ans;
ans.len = len - num.len + ;
if (ans.len < )
{
ans.len = ;
return ans;
} bign divisor = *this, divid = num;
divisor.sign = divid.sign = ;
int k = ans.len - ;
int j = len - ;
while (k >= )
{
while (divisor.s[j] == ) j--;
if (k > j) k = j;
char z[MAX_L];
memset(z, , sizeof(z));
for (int i = j; i >= k; i--)
z[j - i] = divisor.s[i] + '';
bign dividend = z;
if (dividend < divid) { k--; continue; }
int key = ;
while (divid*key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid*key;
for (int i = ; i < k; i++)
temp = temp * ;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign^num.sign);
return ans;
} bign bign::operator/=(const bign&num)
{
*this = *this / num;
return *this;
} bign bign::operator%(const bign& num)const
{
bign a = *this, b = num;
a.sign = b.sign = ;
bign result, temp = a / b*b;
result = a - temp;
result.sign = sign;
return result;
} bign bign::pow(const bign& num)const
{
bign result = ;
for (bign i = ; i < num; i++)
result = result*(*this);
return result;
} bign bign::factorial()const
{
bign result = ;
for (bign i = ; i <= *this; i++)
result *= i;
return result;
} void bign::clean()
{
if (len == ) len++;
while (len > && s[len - ] == '\0')
len--;
} bign bign::Sqrt()const
{
if(*this<)return -;
if(*this<=)return *this;
bign l=,r=*this,mid;
while(r-l>)
{
mid=(l+r)/;
if(mid*mid>*this)
r=mid;
else
l=mid;
}
return l;
} bign::~bign()
{
} int a[];
bign dp[][];
int n,k;
int main()
{
while(cin>>n>>k)
{ for(int i=; i<=n; i++)
{
cin>>a[i];
}
bign aa=,bb=;
for(int i=;i<=n;i++) {
for(int j=;j<=k;j++) dp[i][j]=aa;
}
for(int i=;i<=n;i++)dp[i][]=bb;
for(int i=;i<=n;i++) {
for(int j=;j<i;j++) {
if(a[i]>a[j]) {
for(int kk=;kk<=k;kk++) {
dp[i][kk]+=dp[j][kk-];
}
}
}
}
bign ans;
ans=dp[][k];
for(int i=;i<=n;i++)ans+=dp[i][k];
cout<<ans<<endl;
} return ;
}

代码

 

HDU5568/BestCoder Round #63 (div.2) B.sequence2 dp+高精度的更多相关文章

  1. HDU5569/BestCoder Round #63 (div.2) C.matrix DP

    matrix Problem Description Given a matrix with n rows and m columns ( n+m is an odd number ), at fir ...

  2. BestCoder Round #63 (div.2)

    感觉有些无聊的比赛. A 暴力枚举下就行 B 简单的dp,但是wa了一发后就去先把C做了,然后发现如果输入的100个数,是如1,2,3,4,...,100,然后k=50,个数为c(100,50).果断 ...

  3. hdu5569 BestCoder Round #63 (div.2)

    题意: 给你一个矩阵,要求从左上角走到右下角,走个的费用:a[1]*a[2] + a[3]*a[4] + ......+ a[2n-1]*a[2n] 思路: 果然不机智,自己把自己套路了 对于每个奇数 ...

  4. HDU5567/BestCoder Round #63 (div.2) A sequence1 水

    sequence1  Given an array a with length n, could you tell me how many pairs (i,j) ( i < j ) for a ...

  5. BestCoder Round #69 (div.2) Baby Ming and Weight lifting(hdu 5610)

    Baby Ming and Weight lifting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  6. BestCoder Round #68 (div.2) tree(hdu 5606)

    tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. BestCoder Round #11 (Div. 2) 题解

    HDOJ5054 Alice and Bob Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  8. hdu5635 BestCoder Round #74 (div.2)

    LCP Array  Accepts: 131  Submissions: 1352  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: 13 ...

  9. hdu 5636 搜索 BestCoder Round #74 (div.2)

    Shortest Path  Accepts: 40  Submissions: 610  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: ...

随机推荐

  1. hdu 1873 看病要排队

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1873 看病要排队 Description 看病要排队这个是地球人都知道的常识.不过经过细心的0068的 ...

  2. Hadoop之Hive UDAF TopN函数实现

    public class GenericUDAFTopNRow extends AbstractGenericUDAFResolver { @Overridepublic GenericUDAFEva ...

  3. centos6.4 安装 hive 0.12.0

    环境:centos6.4  64bit, 前提:hadoop已经正常运行,可以使用hadoop dfsadmin -report查看 hive 解压   tar zcvf hive-0.12.0.ta ...

  4. iOS学习之UI可视化编程-XIB

    一.Interface Builder可视化编程 1.Interface Builder简介: GUI:图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是 ...

  5. GNU make 总结 (二)

    规则描述了在何种情况下使用什么命令来创建或者更新一个目标.如果在makefile中第一个规则有多个目标的话,那么多个目标中的第一个将会作为make的“终极目标”. 3.1 规则语法 TARGETS : ...

  6. GNU make 总结 (一)

    make的执行依赖于一个makefile文件,该文件告诉make应该如何执行编译和链接操作.make通过比较对应文件的最后修改时间来决定哪些文件需要更新.make工具主要用来进行工程编译和程序链接操作 ...

  7. Sublime Text 3安装Latex

    Sublime Text 3安装Latex 安装环境 Sublime Text 3已安装Package Control 安装过程 进入官网下载安装MikTex,www.miktex.org 进入官网下 ...

  8. Microsoft Dynamics CRM 2013 安装过程图解及安装序列号

    Microsoft Dynamics CRM 2013 安装过程 图解   在安装前,先持一下SQL配置管理,将相关的服务打开.(由于在虚拟机里,许多服务需要时才会打开,像Reporting Serv ...

  9. android开发实现静默安装(root权限)

    方式是将应用设置为内置的系统应用,注意事system/app目录下面,采用copy2SystemApp()方法就可以,注意chmod 777的权限,若是直接将apk拷贝到system/app目录,没有 ...

  10. [转载]linux sed命令详解

    简介 sed 是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的 ...