postgresql全文检索语法
第1章 全文检索语法
1.1 概述
查询引擎为文本数据类型提供~, ~*, LIKE和ILIKE操作符,并提供全文检索以识别自然语言文档,并通过相关性查询进行排序。查询引擎提供两种数据类型用于支持全文检索,即tsvector类型与tsquery类型。
1.2 文档(tsvector)类型
对于tsvector类型,表示一个检索单元,通常是一个数据库表中一行的文本字段,或者这些字段的可能组合(级联),也可能存储在多个表中或者动态地获得,它的值是一个无重复值的lexemes排序列表,即一些同一个词的不同变种的标准化,在输入的同时会自动排序和消除重复。to_tsvector函数通常用于解析和标准化文档字符串。
一个tsvector的值是唯一分词的分类列表,把一话一句词格式化为不同的词条,在进行分词处理的时候tsvector会自动去掉分词中重复的词条,按照一定的顺序装入。例如
SELECT 'a fat cat sat on a mat and atea fat rat'::tsvector;
tsvector
----------------------------------------------------
'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat''sat'
从上面的例子可以看出 ,通过tsvector把一个字符串按照空格进行分词,分词的顺序是按照长短和字母来排序的。但是某些时候,为了让词条中包含空格或者符号,就需要对其使用引号。
SELECT $$the lexeme ' ' contains spaces$$::tsvector;
tsvector
-------------------------------------------
' ''contains' 'lexeme' 'spaces' 'the'
为了使用引号,可以使用双$$符号来避免混淆。并且词条位置常量可以附属于每个词条,例如:
SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
tsvector
-------------------------------------------------------------------------------
'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11'mat':7 'on':5 'rat':12 'sat':4
理解tsvector类型是很重要的,不能只关注标准的应用.例如
select 'The Fat Rats'::tsvector;
tsvector
--------------------
'Fat' 'Rats' 'The'
但是对于英文全文检索应用来说,上面的句子就是非标准化的,但是tsvector是不会知道的,为处理加工的文本应该通过使用to_tsvector函数来是之规格化,标注化的应用于搜索.
SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector
-----------------
'fat':2 'rat':3
1.3查询(tsquery)类型
对于tsquery类型,表示一个检索条件,存储用于检索的词汇,并且使用布尔操作符&(AND),|(OR)和!(NOT) 来组合它们,括号用来强调操作符的分组。与tsvector一样,任何单词必须在转换为tsquery类型前规范化。to_tsquery函数及plainto_tsquery函数可以方便的用来执行规范化。
SELECT 'fat & rat'::tsquery;
tsquery
---------------
'fat' & 'rat'
SELECT 'fat & (rat | cat)'::tsquery;
tsquery
---------------------------
'fat' & ( 'rat' | 'cat' )
SELECT to_tsquery('english', 'fat & rat');
to_tsquery
---------------
'fat' & 'rat'
to_tsquery函数在处理查询文本的时候,查询文本的单个词之间要使用逻辑操作符(& (AND), | (OR) and ! (NOT))连接(或者使用括号)。例如
SELECT to_tsquery('english', 'Fat Rats');
如果要使执行上面的操作,就会报语法错误。然而plainto_tsquery函数却可以提供一个标准的tsquery,如上面的例子,plainto_tsquery会自动加上逻辑&操作符。
SELECT plainto_tsquery('english','Fat Rats');
plainto_tsquery
-----------------
'fat' & 'rat'
但是plainto_tsquery函数不能够识别逻辑操作符和权重标记。
SELECTplainto_tsquery('english','The Fat & Rats:C');
plainto_tsquery
---------------------
'fat'& 'rat' & 'c'
1.4检索表
查询引擎的全文检索基于匹配算子@@,如果一个tsvector与一个tsquery匹配,则返回true。在不使用索引的情况下也是可以进行全文检索的,一个简单查询,显示出title从所有body字段中包含friend的每一行:
SELECT title
FROM web
WHERE to_tsvector('english', body) @@ to_tsquery('english','friend');
其中to_tsvector和to_tsquery中第一个参数用于指定全文检索的分词语言设置,一般可省略,语句如下:
SELECT title
FROM web
WHERE to_tsvector(body) @@ to_tsquery('friend');
1.5创建索引
gist 和 gin的索引类型,这两种索引都能用在提高全文检索的速度,注意全文检索不一定非要使用索引,但是当一个字段被固定规律搜索时,使用索引将会有很好的效果。创建gist 索引字段的类型可以是 tsvector 或者 tsquery。创建gin 索引字段的类型必须是tsvector
CREATE INDEX web_idx ON web USING gin(to_tsvector('english', body));
创建索引可以有多种方式.索引的创建甚至可以连接两个列:
CREATE INDEX web_idx ON web USING gin(to_tsvector('english', title ||body));
另外的一种方式是创建一个单独的 tsvector列,然后使用to_tsvector函数把需要索引字段的数据联合在一起,比如列title和body,并且使用函数coalesce来确保字段为NULL的可以建立索引。如下:
ALTER TABLE web ADD COLUMN textsearchable_index_col tsvector;
UPDATE web SET textsearchable_index_col =
to_tsvector('english', coalesce(title,'') ||coalesce(body,''));
然后,就可以创建倒排的索引
CREATE INDEX textsearch_idx ON web USING gin(textsearchable_index_col);
索引创建完毕,就可以使用全文检索了。
SELECT title
FROM web
WHERE textsearchable_index_col @@ to_tsquery('create& table')
ORDER BY last_mod_date DESC LIMIT 10;
1.6权重匹配(Weight)
提供一个函数setweight,使用这个函数要引入一个概念,这个概念就是权重weight,什么是权重,字面上解释就是权衡一下哪个更重要,也就是说哪个更侧重一些。可以通过函数setweight来设置权重,switf提供了四个权重级别A,B,C,D,级别类型用来标记他们来自于文档中的不同部分,例如title和body。查询结果的关注度可以使用这个权重级别。如:
UPDATE tt SET ti =
setweight(to_tsvector(coalesce(title,'')), 'A') ||
setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
setweight(to_tsvector(coalesce(body,'')), 'D');
在搜索中tsquery中可以使用权重(weight),在搜索词条中附加权重,查询的结果就是在这个权重范围的了。
SELECT to_tsquery('english', 'Fat | Rats:AB');
to_tsquery
------------------
'fat' | 'rat':AB
1.7相关(Ranking)查询
相关度试图衡量哪一个文档是检索中最关注的,所以当有很多匹配时,最相关的一个则最先显示。查询引擎提供了两个预定义的相关函数(ts_rank和rs_rank_cd),考虑了查询词在文档中出现的频率,术语在文档中的紧密程度,以及它们在文档中的部分的重要性。
这两个函数的语法是
ts_rank([ weights float4[], ] vectortsvector, query tsquery [, normalization integer ]) returns float4
ts_rank_cd([ weights float4[], ] vectortsvector, query tsquery [, normalization integer ]) returns float4
两个函数的第一个参数都是 权重(weight),在前面已经讲了权重的概念。
参数的格式为 {D-weight, C-weight, B-weight, A-weight} ,在使用函数的时候没有指定这个参数,默认指定参数为:{0.1, 0.2, 0.4, 1.0}
vector tsvector表示分词的位置
query tsquery 表示查询关键词的位置
因为一个长文档有更大的几率包含检索的关键词,我们认为一个包含100词的文档有5个关键词,比一个包含1000个词的文档有五个关键词更相关。所以这里用最后一个参数来表示文档长度对得分的影响,你可以指定一个或者多个例如(2|4)。这些参数的定义
0 (the default) ignores the documentlength
表示跟长度大小没有关系
1 divides the rank by 1 + the logarithmof the document length
表示参数 关注度(rank)除以 文档长度的对数+1
2 divides the rank by the documentlength
表示 关注度 除以 文档的长度
4 divides the rank by the mean harmonicdistance between extents (this is implemented only by ts_rank_cd)
表示 关注度 除以 文档长度的平均值,只能使用函数ts_rank_cd.
8 divides the rank by the number ofunique words in document
表示 关注度 除以 文档中 唯一分词的数量
16 divides the rank by 1 + thelogarithm of the number of unique words in document
表示关注度 除以 唯一分词数量的对数+1
32 divides the rank by itself + 1
表示 关注度 除以 本身+1
下面是返回得分最高的前10项的例子
SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
title | rank
-----------------------------------------------+----------
Neutrinos in the Sun | 3.1
The Sudbury NeutrinoDetector | 2.4
A MACHO View of Galactic DarkMatter | 2.01317
Hot Gas and Dark Matter | 1.91171
The Virgo Cluster: Hot Plasmaand Dark Matter | 1.90953
Rafting for SolarNeutrinos | 1.9
NGC 4650A: Strange Galaxy andDark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for CosmicNeutrinos | 1.6
Weak Lensing Distorts theUniverse | 0.818218
这是相同的例子使用规范化的排名
SELECT title,ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank
FROM apod,to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
title | rank
-----------------------------------------------+-------------------
Neutrinos in the Sun | 0.756097569485493
The Sudbury Neutrino Detector | 0.705882361190954
A MACHO View of Galactic Dark Matter | 0.668123210574724
Hot Gas and Dark Matter | 0.65655958650282
The Virgo Cluster: Hot Plasma and Dark Matter| 0.656301290640973
Rafting for Solar Neutrinos | 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
Hot Gas and Dark Matter | 0.617195790024749
Ice Fishing for Cosmic Neutrinos | 0.615384618911517
Weak Lensing Distorts the Universe | 0.450010798361481
1.8索引统计函数
ts_stat(sqlquery text,[ weights text, ] OUT word text, OUT ndoc integer, OUT nentry integer)
返回的是统计的纪录
word text — 索引中的词条
ndoc integer — 词条在索引中出现的次数
nentry integer — 词条在文档中出现的总次数
例如:
SELECT * FROMts_stat('SELECT tsv FROM messages')
ORDER BY nentry DESC,ndoc DESC, word
LIMIT 10;
查询的结果为
word ndoc nentry
test 2 3
title 2 2
test 1 2
body 1 1
上面可以看到,通过ts_stat函数就可以看到索引列中的分词的情况。
1.9 屏蔽词(Stop Words)
stop words 是一个很普遍并且在每个文档中几乎都能出现的的词,并且这个词没有实际的意义,因此在全文检索的文档中这些词将被忽略。例如英文文本内容中单词 像 a 和like,他们不需要存储在索引中,但是他会影响词所在文档的位置。
SELECT to_tsvector('english','in the list of stopwords');
to_tsvector
----------------------------
'list':3'stop':5 'word':6
并且相关度的计算与是否存在stopwords是十分不同的,如:
SELECT ts_rank_cd (to_tsvector('english','in thelist of stop words'), to_tsquery('list & stop'));
ts_rank_cd
------------
0.05
SELECT ts_rank_cd (to_tsvector('english','list stopwords'), to_tsquery('list & stop'));
ts_rank_cd
------------
0.1
postgresql全文检索语法的更多相关文章
- PostgreSQL 全文检索
PostgreSQL 8.3.1 全文检索(转) 在postgreSQL 8.3自带支持全文检索功能,在之前的版本中需要安装配置tsearch2才能使用,安转配置tsearch2就不再多说了,主要介 ...
- postgresql 基本语法
postgresql数据库创建/修改/删除等写入类代码语法总结: 1,创建库 2,创建/删除表 2.1 创建表 create table myTableName 2.2 如果表不存在则创建表 crea ...
- PostgreSQL全文检索zhparser使用
本文引用自: http://blog.chinaunix.net/uid-20726500-id-4820580.html 防止文章丢失才进行复制 PostgreSQL支持全文检索,其内置的缺省的分词 ...
- 【搜索引擎】 PostgreSQL 10 实时全文检索和分词、相似搜索、模糊匹配实现类似Google搜索自动提示
需求分析 要通过PostgreSQL实现类似Google搜索自动提示的功能,例如要实现一个查询海量数据中的商品名字,每次输入就提示用户各种相关搜索选项,例如淘宝.京东等电商查询 思路 这个功能可以用 ...
- PostgreSQL介绍以及如何开发框架中使用PostgreSQL数据库
最近准备下PostgreSQL数据库开发的相关知识,本文把总结的PPT内容通过博客记录分享,本随笔的主要内容是介绍PostgreSQL数据库的基础信息,以及如何在我们的开发框架中使用PostgreSQ ...
- MySQL全文检索笔记 转载
1. MySQL 4.x版本及以上版本提供了全文检索支持,但是表的存储引擎类型必须为MyISAM,以下是建表SQL,注意其中显式设置了存储引擎类型 CREATE TABLE articles ( id ...
- 跟我一起读postgresql源码(二)——Parser(查询分析模块)
上篇博客简要的介绍了下psql命令行客户端的前台代码.这一次,我们来看看后台的代码吧. 十分不好意思的是,上篇博客我们只说明了前台登陆的代码,没有介绍前台登陆过程中,后台是如何工作的.即:后台接到前台 ...
- SpringBoot连接PostgreSQL
这个 org.postgresql.jdbc.PgConnection.createClob() 方法尚未被实作 application.properties spring.datasource.pl ...
- PostgreSql那点事(文件读取写入、命令执行的办法)
• 2013/07/9 作者: admin PostgreSql那点事(文件读取写入.命令执行的办法) 今天无意发现了个PostgreSQL环境,线上学习了下,一般的数据注射(读写数据库)差异不大,不 ...
随机推荐
- PDF 补丁丁 0.4.1.728 测试版发布
书签编辑器新增预览界面,可查看书签所连接到文档的页数. 该功能将继续完善,请各位关注.
- ACTIVITI 表结构数据分析
ACTIVITI ACT_RU_EXECUTION 表 这个表是工作流程的核心表,流程的驱动都和合格表有密切的关系. 一般来讲一个流程实例都有一条主线.如果流程为直线流程,那么流程实例在这个表 ...
- Net开发环境配置
Web开发插件: 1.JSEnhancements js和css折叠插件 可以参见dudu的介绍不错的VS2010扩展——JSEnhancements,让js和css也折叠 下载地址:http://v ...
- Javascript——Math对象
Math 对象是一个固有的对象,无需创建它,直接把 Math 作为对象使用就可以调用其所有属性和方法.这是它与Date,String对象的区别 Math 对象属性 Math 对象方法
- 跨域SSO的实现
翻译自CodeProject网站ASP.NET9月份最佳文章:Single Sign On (SSO) for cross-domain ASP.NET applications. 翻译不妥之处还望大 ...
- poj 1742 Coins (动态规划,背包问题)
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 32977 Accepted: 11208 Descripti ...
- Twitter CEO:有望进军中国 不会改变原则
新浪科技讯 8月12日下午消息,据台湾“中央社”报道,Twitter CEO科斯特洛(Dick Costolo)日前接受<日经新闻>专访时指出,Twitter有望进军中国大陆,科斯特洛表示 ...
- 在Windows平台搭建PHP开发环境(四)
一.概念 1.1 在Windows下搭建 wamp: apache(iis) + php + mysql +phpmyadmin 1.2 在Linux下搭建 lamp: linux + php ...
- HTML--1标签表格
HTML 内容(Hyper Text Markup Language,超文本标记语言) CSS 网页美化 Javascript 脚本语言 打开DREAMWEAVER,新建HTML,如下 ...
- MAT
http://www.yrom.net/blog/2014/08/29/eclipse-mat/