相关讨论里的答案:(by mint_my )

1.反弹n次,那起点S,每次反弹点,终点S共连接n+1条边,那么原问题变为从S走n+1条边回到S,为令n=n+1
2.设步长为a条边,gcd(a,n)==1时,lcm(a,n)=a*n,由于a*n=n*a那么最少走n次步长为a的路线才能重合到S;反之gcd(a,n)==d时,lcm(a,n)=a*n/d,由于关系a*(n/d)=n*(a/d),最少走n/d步即反弹n/d-1<n次就可以回到S,所以根据题意,方案数为与边互质的数的个数即n的欧拉函数

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int main(){
int n;scanf("%d",&n);++n;
int ans=n;
for(int i=2;i*i<=n;i++){
if(n%i==0) ans=ans/i*(i-1);
while(n%i==0) n/=i;
}
if(n!=1) ans=ans/n*(n-1);
printf("%d\n",ans);
return 0;
}

  

基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
在圆上一点S,扔出一个球,这个球经过若干次反弹还有可能回到S点。N = 4时,有4种扔法,如图:
 
恰好经过4次反弹回到起点S(从S到T1,以及反向,共4种)。
给出一个数N,求有多少种不同的扔法,使得球恰好经过N次反弹,回到原点,并且在第N次反弹之前,球从未经过S点。
Input
输入一个数N(1 <= N <= 10^9)。
Output
输出方案数量。
Input示例
4
Output示例
4

51nod1262 扔球的更多相关文章

  1. POJ 3783 Balls --扔鸡蛋问题 经典DP

    题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...

  2. Google面试题之100层仍两个棋子

    一道Google面试题,题目如下:"有一个100层高的大厦,你手中有两个相同的玻璃围棋子.从这个大厦的某一层扔下围棋子就会碎,用你手中的这两个玻璃围棋子,找出一个最优的策略,来得知那个临界层 ...

  3. UVa 679 Dropping Balls (例题 6-6)

    传送门:https://uva.onlinejudge.org/external/6/p679.pdf 题意:在一颗结点带开关的完全二叉树上扔球,初始时开关为关闭状态,树的深度为D(1 <= D ...

  4. [日常] PKUWC 2018爆零记

    吃枣药丸...先开个坑... day -1 上午周测...大翻车... 下午被查水表说明天必须啥啥啥...(当时我差点笑出声) 晚上领到笔记本一枚和一袋耗材(袜子) 然而班会开太晚回去没来得及收拾就晚 ...

  5. 2017 NWERC

    2017 NWERC Problem A. Ascending Photo 题目描述:给出一个序列,将其分成\(m\)份(不需要均等),使得将这\(m\)份重新排列后构成的是不下降序列,输出最小的\( ...

  6. Less Is More【少即是多】

    Less Is More Adults understand what it feels like to be flooed with objects. 成年人知道被物品淹没的感觉. Why do w ...

  7. Light OJ 1317 Throwing Balls into the Baskets 概率DP

    n个人 m个篮子 每一轮每一个人能够选m个篮子中一个扔球 扔中的概率都是p 求k轮后全部篮子里面球数量的期望值 依据全期望公式 进行一轮球数量的期望值为dp[1]*1+dp[2]*2+...+dp[ ...

  8. light oj 1317

    Description You probably have played the game "Throwing Balls into the Basket". It is a si ...

  9. 模板(ac):启发式合并

    首先说明一点:线段树合并不是启发式合并. 启发式合并的大概内容就是:把小的数据结构按照这个数据结构的正常插入方法,一个一个地暴力塞进去. 而线段树合并显然不是这个东西. 这道题的题解太烂了,所以耽误了 ...

随机推荐

  1. Sqli-labs less 28

    Less-28 本关考察内容与27关没有太大的差距,我们直接给出一个payload: http://127.0.0.1/sqllib/Less-28/?id=100')union%a0select(1 ...

  2. CSS 加载新方式

    Chrome 浏览器有意改变<link rel="stylesheet">的加载方式,当其出现在<body>中时,这一变化将更加明显.笔者决定在本文中进行详 ...

  3. UVA 10892 LCM Cardinality 数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  4. NPOI之Excel——合并单元格、设置样式、输入公式

    首先建立一个空白的工作簿用作测试,并在其中建立空白工作表,在表中建立空白行,在行中建立单元格,并填入内容: //建立空白工作簿 IWorkbook workbook = new HSSFWorkboo ...

  5. 问题:-[UIViewController _loadViewFromNibNamed:bundle:] loaded the "BlueView" nib but the view outlet was not set.

    问题:-[UIViewController _loadViewFromNibNamed:bundle:] loaded the "BlueView" nib but the vie ...

  6. java连接access数据库

    完整代码: package odbcj; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Prep ...

  7. hdu 4159 Indomie (DP,数学概率)

    推出数学公式: #include<stdio.h> #include<string.h> __int64 C(int m,int n) { __int64 tmp=; if(m ...

  8. SPRING IN ACTION 第4版笔记-第十章Hitting the database with spring and jdbc-002-本章的源代码

    0.结构 一.JDBC层 1. package spittr.db; import java.util.List; import spittr.domain.Spitter; /** * Reposi ...

  9. C编译器剖析PDF文档及UCC编译器162.3

    http://blog.csdn.net/sheisc/article/details/42387857 http://blog.csdn.net/sheisc/article/details/455 ...

  10. 实践Oracle与DB2区别及问题解决

    实践Oracle与DB2区别及问题解决 项目进入开发阶段的时候,为了方便,一直使用Oracle数据库进行开发, 所以很多sql语句都是在oracle能正常创建的,后期由于项目中嵌入了IBM的产品及其他 ...