Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze.
A set of P (1 <= P <= 1500) paths connects them. The paths are
wide, so that any number of cows can traverse a path in either
direction.

Some of the farm's fields have rain shelters under which the cows
can shield themselves. These shelters are of limited size, so a single
shelter might not be able to hold all the cows. Fields are small
compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field.
The first integer (range: 0..1000) is the number of cows in that field.
The second integer (range: 0..1000) is the number of cows the shelter
in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a
path. The first and second integers (both range 1..F) tell the fields
connected by the path. The third integer (range: 1..1,000,000,000) is
how long any cow takes to traverse it.

Output

*
Line 1: The minimum amount of time required for all cows to get under a
shelter, presuming they plan their routes optimally. If it not possible
for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter
in that field, four cows from field 1 can get under the shelter in field
2, and one cow can get to field 3 and join the cows from that field
under the shelter in field 3. Although there are other plans that will
get all the cows under a shelter, none will do it in fewer than 110 time
units.

 
 
题目大意
有F个牛棚,和P条道路
每个牛棚能容纳的牛的数量不同,我们要在最短的时间内移动牛,使得所有的牛都能被容纳
 
先floyd出最短路
然后二分时间+网络流判定
 const
maxn=;
inf=;
var
first,now,pre,vh,dis,his:array[..maxn*]of longint;
f:array[..maxn,..maxn]of int64;
last,next,liu:array[..maxn*maxn*]of longint;
a,b:array[..maxn]of longint;
n,m,sum,tot:longint; procedure insert(x,y,z:longint);
begin
inc(tot);last[tot]:=y;next[tot]:=first[x];first[x]:=tot;liu[tot]:=z;
inc(tot);last[tot]:=x;next[tot]:=first[y];first[y]:=tot;liu[tot]:=;
end; procedure down(var x:int64;y:int64);
begin
if x>y then x:=y;
end; function flow:longint;
var
i,j,jl,min,aug:longint;
flag:boolean;
begin
for i:= to n<<+ do now[i]:=first[i];
for i:= to n<<+ do vh[i]:=;
for i:= to n<<+ do dis[i]:=;
vh[]:=n<<+;flow:=;
i:=;aug:=inf;
while dis[i]<n<<+ do
begin
his[i]:=aug;
flag:=false;
j:=now[i];
while j<> do
begin
if (liu[j]>) and (dis[i]=dis[last[j]]+) then
begin
if aug>liu[j] then aug:=liu[j];
now[i]:=j;
pre[last[j]]:=j;
i:=last[j];
flag:=true;
if i=n<<+ then
begin
inc(flow,aug);
while i<> do
begin
dec(liu[pre[i]],aug);
inc(liu[pre[i]xor ],aug);
i:=last[pre[i]xor ];
end;
aug:=inf;
end;
break;
end;
j:=next[j];
end;
if flag then continue;
min:=n<<+;
j:=first[i];
while j<> do
begin
if (liu[j]>) and (dis[last[j]]<min) then
begin
min:=dis[last[j]];
jl:=j;
end;
j:=next[j];
end;
dec(vh[dis[i]]);
if vh[dis[i]]= then break;
now[i]:=jl;
dis[i]:=min+;
inc(vh[min+]);
if i<> then
begin
i:=last[pre[i]xor ];
aug:=his[i];
end;
end;
end; procedure main;
var
i,j,k,x,y:longint;
l,r,z,mid,max:int64;
begin
fillchar(f,sizeof(f),);
read(n,m);
for i:= to n do read(a[i],b[i]);
for i:= to n do inc(sum,a[i]);
for i:= to n do f[i,i]:=;
for i:= to m do
begin
read(x,y,z);
if z<f[x,y] then
begin
f[x,y]:=z;
f[y,x]:=z;
end;
end;
for k:= to n do
for i:= to n do
for j:= to n do
down(f[i,j],f[i,k]+f[k,j]);
r:=;
for i:= to n do
for j:= to n do
if (r<f[i,j]) and (f[i,j]<f[,]) then r:=f[i,j];
l:=;max:=r;inc(r);
while l<>r do
begin
mid:=(l+r)>>;
tot:=;
for i:= to n<<+ do first[i]:=;
for i:= to n do insert(,i,a[i]);
for i:= to n do insert(i+n,n<<+,b[i]);
for i:= to n do
for j:= to n do
if f[i,j]<=mid then insert(i,j+n,inf);
if flow>=sum then r:=mid
else l:=mid+;
end;
if l>max then writeln(-)
else writeln(l);
end; begin
main;
end.

Ombrophobic Bovines - POJ 2391的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

  3. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  4. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  5. Ombrophobic Bovines 分类: POJ 图论 最短路 查找 2015-08-10 20:32 2人阅读 评论(0) 收藏

    Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16539 Accepted: 3605 ...

  6. poj2391 Ombrophobic Bovines 拆点+二分法+最大流

    /** 题目:poj2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题意:有n块区域,第i块区域有ai头奶牛,以及一个可以容纳bi ...

  7. POJ2391:Ombrophobic Bovines(最大流+Floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 21660Accepted: 4658 题目 ...

  8. POJ2391 Ombrophobic Bovines(网络流)(拆点)

                         Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions ...

  9. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )

    一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...

随机推荐

  1. POJ C程序设计进阶 编程题#1:计算矩阵边缘之和

    编程题#1:计算矩阵边缘元素之和 来源: POJ (Coursera声明:在POJ上完成的习题将不会计入Coursera的最后成绩.) 注意: 总时间限制: 1000ms 内存限制: 65536kB ...

  2. linux中sudoers别名规则

    /etc/sudoers 配置文档中别名规则 别名规则定义格式如下: Alias_Type NAME = item1, item2, ... 或 Alias_Type NAME = item1, it ...

  3. Cassandra 计数器counter类型和它的限制

    文档基础 Cassandra 2.* CQL3.1 翻译多数来自这个文档 更新于2015年9月7日,最后有参考资料 作为Cassandra的一种类型之一,Counter类型算是限制最多的一个.Coun ...

  4. ThinkPHP之中的事务回滚

    小李子 获取thinkphp之中执行的SQL: 1.用调试模式的追踪trace功能: 2.代码: $user_type=D('user_type'); $datass=array('school_id ...

  5. HTTP协议中PUT/GET/POST/HEAD等介绍

    HTTP协议中GET.POST和HEAD的介绍 GET: 请求指定的页面信息,并返回实体主体. HEAD: 只请求页面的首部. POST: 请求服务器接受所指定的文档作为对所标识的URI的新的从属实体 ...

  6. DevExpress 表中数据导出

    gridView1.ExportToXlsx("SampleStock.xlsx"); if (true) { DevExpress.XtraEditors.XtraMessage ...

  7. 学习simple.data之基础篇

    simple.data是一个轻量级的.动态的数据访问组件,支持.net4.0. 1.必须条件和依赖性: v4.0 or greater of the .NET framework, or v2.10 ...

  8. c# equals和==的区别

    简言之: equals必须是类型和值都得相等 == 只要值相等 注意: void Main() { ; ; Console.WriteLine(a.Equals(b)); //True (short会 ...

  9. Java 第五天 Spring IOC 配置文件

    Spring xml结构定义文件: http://www.springframework.org/schema/beans/spring-beans.xsd 可用xsd列表: http://www.s ...

  10. ok6410的LCD裸机范例

    /****************************************** 实验步骤 1.配置引脚功能,将其GPI.GPJ引脚设置为VD数据输出模式,及GPJ后几位设置成LCD时钟输出: ...