网上见到一个TensorFlow的代码,没见过这个形式的,是概率编程的代码:

# coding=utf-8
# Copyright 2020 The TF-Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. """Tanh bijector.""" from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from tensorflow_probability.python.bijectors import bijector __all__ = [
"Tanh",
] class Tanh(bijector.Bijector):
"""Bijector that computes `Y = tanh(X)`, therefore `Y in (-1, 1)`. This can be achieved by an affine transform of the Sigmoid bijector, i.e.,
it is equivalent to
```
tfb.Chain([tfb.Affine(shift=-1, scale=2.),
tfb.Sigmoid(),
tfb.Affine(scale=2.)])
``` However, using the `Tanh` bijector directly is slightly faster and more
numerically stable.
""" def __init__(self, validate_args=False, name="tanh"):
parameters = dict(locals())
super(Tanh, self).__init__(
forward_min_event_ndims=0,
validate_args=validate_args,
parameters=parameters,
name=name) def _forward(self, x):
return tf.nn.tanh(x) def _inverse(self, y):
# 0.99999997 is the maximum value such that atanh(x) is valid for both
# tf.float32 and tf.float64
y = tf.where(tf.less_equal(tf.abs(y), 1.),
tf.clip_by_value(y, -0.99999997, 0.99999997),
y)
return tf.atanh(y) def _forward_log_det_jacobian(self, x):
# This formula is mathematically equivalent to
# `tf.log1p(-tf.square(tf.tanh(x)))`, however this code is more numerically
# stable. # Derivation:
# log(1 - tanh(x)^2)
# = log(sech(x)^2)
# = 2 * log(sech(x))
# = 2 * log(2e^-x / (e^-2x + 1))
# = 2 * (log(2) - x - log(e^-2x + 1))
# = 2 * (log(2) - x - softplus(-2x))
return 2.0 * (
tf.math.log(tf.constant(2.0, dtype=x.dtype)) - x - tf.nn.softplus(
-2.0 * x))

================================================

由于不是很理解这个代码的意思,于是找了下TensorFlow的官方文档:

https://tensorflow.google.cn/probability/api_docs/python/tfp/bijectors/Bijector

  class Exp(Bijector):

    def __init__(self, validate_args=False, name='exp'):
super(Exp, self).__init__(
validate_args=validate_args,
forward_min_event_ndims=0,
name=name) def _forward(self, x):
return tf.exp(x) def _inverse(self, y):
return tf.log(y) def _inverse_log_det_jacobian(self, y):
return -self._forward_log_det_jacobian(self._inverse(y)) def _forward_log_det_jacobian(self, x):
# Notice that we needn't do any reducing, even when`event_ndims > 0`.
# The base Bijector class will handle reducing for us; it knows how
# to do so because we called `super` `__init__` with
# `forward_min_event_ndims = 0`.
return x
```

根据文档内容可以知道,这个bijectors是双向映射,也就是说知道g(X)=Y,知道X的概率分布及概率密度,现在要求Y的概率密度。上面代码中_forward函数和_inverse函数的含义比较好理解,也就是原函数与反函数,但是这个_forward_log_det_jacobian函数是什么意思就不是很好理解了,这里也就是说下个人的理解,不保证正确:

_forward_log_det_jacobian函数的输入变量为x,其函数需要返回的就是_forward函数的导数的log值,也就是log( _forward(x)导数 ),由于上面代码的_forward函数为tf.exp(x),因此_forward(x)的导数也为tf.exp(x),log( _forward(x)导数则为tf.log(tf.exp(x))=x,因此_forward_log_det_jacobian函数的输出已经为x。

--------------------------------------

例子:

class Identity(Bijector):

  def __init__(self, validate_args=False, name='identity'):
super(Identity, self).__init__(
is_constant_jacobian=True,
validate_args=validate_args,
forward_min_event_ndims=0,
name=name) def _forward(self, x):
return x def _inverse(self, y):
return y def _inverse_log_det_jacobian(self, y):
return -self._forward_log_det_jacobian(self._inverse(y)) def _forward_log_det_jacobian(self, x):
# The full log jacobian determinant would be tf.zero_like(x).
# However, we circumvent materializing that, since the jacobian
# calculation is input independent, and we specify it for one input.
return tf.constant(0., x.dtype)

由于_forward(x)为返回值为x,因此_forward(x)导数为1,tf.log(tf.exp(x))=0.0 。

====================================

我们定义好Bijector的子类对象及其中的_forward函数、_inverse函数、_forward_log_det_jacobian函数,这样就可以通过双射函数一端的概率分布求得另一端的概率分布,比如g(X)=Y,我们知道X的概率分布也就能求得Y的概率密度。

-----------------------------------------------------------

官方文档:

https://tensorflow.google.cn/probability/api_docs/python/tfp/bijectors/Bijector

tensorflow_probability.python.bijectors的一些使用的更多相关文章

  1. Python中的多进程与多线程(一)

    一.背景 最近在Azkaban的测试工作中,需要在测试环境下模拟线上的调度场景进行稳定性测试.故而重操python旧业,通过python编写脚本来构造类似线上的调度场景.在脚本编写过程中,碰到这样一个 ...

  2. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  3. Python 小而美的函数

    python提供了一些有趣且实用的函数,如any all zip,这些函数能够大幅简化我们得代码,可以更优雅的处理可迭代的对象,同时使用的时候也得注意一些情况   any any(iterable) ...

  4. JavaScript之父Brendan Eich,Clojure 创建者Rich Hickey,Python创建者Van Rossum等编程大牛对程序员的职业建议

    软件开发是现时很火的职业.据美国劳动局发布的一项统计数据显示,从2014年至2024年,美国就业市场对开发人员的需求量将增长17%,而这个增长率比起所有职业的平均需求量高出了7%.很多人年轻人会选择编 ...

  5. 可爱的豆子——使用Beans思想让Python代码更易维护

    title: 可爱的豆子--使用Beans思想让Python代码更易维护 toc: false comments: true date: 2016-06-19 21:43:33 tags: [Pyth ...

  6. 使用Python保存屏幕截图(不使用PIL)

    起因 在极客学院讲授<使用Python编写远程控制程序>的课程中,涉及到查看被控制电脑屏幕截图的功能. 如果使用PIL,这个需求只需要三行代码: from PIL import Image ...

  7. Python编码记录

    字节流和字符串 当使用Python定义一个字符串时,实际会存储一个字节串: "abc"--[97][98][99] python2.x默认会把所有的字符串当做ASCII码来对待,但 ...

  8. Apache执行Python脚本

    由于经常需要到服务器上执行些命令,有些命令懒得敲,就准备写点脚本直接浏览器调用就好了,比如这样: 因为线上有现成的Apache,就直接放它里面了,当然访问安全要设置,我似乎别的随笔里写了安全问题,这里 ...

  9. python开发编译器

    引言 最近刚刚用python写完了一个解析protobuf文件的简单编译器,深感ply实现词法分析和语法分析的简洁方便.乘着余热未过,头脑清醒,记下一点总结和心得,方便各位pythoner参考使用. ...

  10. 关于解决python线上问题的几种有效技术

    工作后好久没上博客园了,虽然不是很忙,但也没学生时代闲了.今天上博客园,发现好多的文章都是年终总结,想想是不是自己也应该总结下,不过现在还没想好,等想好了再写吧.今天写写自己在工作后用到的技术干货,争 ...

随机推荐

  1. work02

    第一题: 看程序说答案 int a = 10; int b = 3; int c = a + b;//13 int d = a - b;//7 int e = a * b; //30 int f = ...

  2. idea 中的 jrebel

    1.打开idea设置 ,下载 jrebel 2搜索下载jrebel 3.重启之后,在右下角有个弹窗,这时候选择enable,然后右边的侧边栏工具会弹出一个界面,总共应该有4步,第一步是展开的,点击蓝色 ...

  3. nomp矿池源码详解

    1 项目简介 Node Open Mining Portal(简称NOMP)是一个由Node.js编写的高效.可扩展的加密货币挖矿池软件,专为经验丰富的系统管理员和开发者设计.它包含了Stratum挖 ...

  4. 一些常见功能的查询sql

    Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` 一些常见功能的查询sql 日期:2019-4-10 阿珏 ...

  5. 浅析Vite本地构建原理

    前言 随着Vue3的逐渐普及以及Vite的逐渐成熟,我们有必要来了解一下关于vite的本地构建原理. 对于webpack打包的核心流程是通过分析JS文件中引用关系,通过递归得到整个项目的依赖关系,并且 ...

  6. php+sql后台实现从主表迁出至副表(数据超万条)

    上万条甚至上百万数据进行迁出做备份或者进行不妨碍原系统数据的操作,现在很多企业都会用到,目前就需要将上百万条数据进行迁出到副表保存并操作,直接再后台写一个按钮进行操作,既方便操作也不会很慢.毕竟是客户 ...

  7. EIGRP总结

    EIGRP     思科私有,2013年公开,其他厂商不支持,所以用得不是很多     几秒钟就能完成收敛     触发更新,只要网络不发生变化就不会发生更新     按需更新,只更新变化的部分    ...

  8. Cython编译报错“numpy/arrayobject.h: No such file or directory”解决方案

    问题背景 Cython是用来加速Python程序性能的一个工具,其基本使用逻辑就是将类Python代码(*.pyx扩展格式)编译成\(*.c,*.so\)动态链接库文件,然后就可以在正常的Python ...

  9. 在WPF中使用WriteableBitmap对接工业相机及常用操作

    写作背景 写这篇文章主要是因为工业相机(海康.大恒等)提供的.NET开发文档和示例程序都是用WinForm项目来说明举例的,而在WPF项目中对图像的使用和处理与在WinForm项目中有很大不同.在Wi ...

  10. 【论文阅读】自动驾驶光流任务 DeFlow: Decoder of Scene Flow Network in Autonomous Driving

    再一次轮到讲自己的paper!耶,宣传一下自己的工作,顺便完成中文博客的解读 方便大家讨论. Title Picture Reference and pictures paper: https://a ...