绪论

本合集将详细讲述如何实现基于群只能遗传算法的五子棋AI,采用C++作为底层编程语言

本篇将简要讨论实现思路,并在后续的文中逐一展开

了解五子棋

五子棋规则


五子棋是一种经典的棋类游戏,规则简单却充满策略性。游戏在一个19×19的棋盘上进行(也可以使用13×13或15×15的棋盘)。游戏的目标是率先在棋盘上连成五个相同颜色的棋子(横向、纵向或斜向)。

基本规则:

  1. 棋子:游戏使用两种颜色的棋子,通常为黑白两色。
  2. 落子:玩家轮流在棋盘上放置自己的棋子。
  3. 胜利条件:第一个在直线上(横向、纵向或对角线)连成五个棋子的玩家获胜。

五子棋操作简单,规则易懂,但需要很高的策略和技巧才能赢得比赛。

人类玩家是如何下五子棋的?

以下是一些五子棋对决的思路:

控制中心区域

  • 中心位置的重要性:棋盘中心的控制对游戏至关重要。控制中心区域可以给你更多的机会去创建和阻止对方的五子连线。

创建威胁

  • 连线威胁:尽量让对方必须防守而不能专注于自己的进攻。
  • 双活三:如果形成两个三子连线,并且这两个连线不会被对方轻易阻挡,就能够在几步内取得胜利。

防守对方的连线

  • 观察对方的棋子布局:注意对方棋子的排列,尤其是对方试图形成的三子、四子连线。
  • 及时阻挡:如果对方有连续的三子或四子的排列,应该优先阻挡对方的连线。

预判对方策略

  • 猜测对方意图:了解对方的策略,预测对方的下一步棋,提前做出相应的防御或进攻。

AI应该如何模仿?

为了让AI棋手学会下五子棋,甚至超越人类玩家的水平,首先应当有以下步骤:

  1. 理解棋盘信息:将棋盘的状态转换为程序能够处理的格式。这通常包括将棋盘上每个位置的状态(如空白、黑子或白子)编码为特定的数据结构,以便程序可以进行分析和处理。

  2. 设定行为集合:定义AI可以执行的操作范围。在五子棋中,AI可以在棋盘上任意未被占据的位置落子。

  3. 设定决策模式:确定AI的决策方式。本例中,AI采用贪心策略,即在每一步中选择预期回报最高的行动。贪心策略通过评估每个可能的落子位置的即时收益,选择对当前局势最有利的行动。

理解棋盘信息

理论上来讲,能够给AI提供的信息越多,那么AI做出的决策质量就越高,对于棋盘信息可以以格子为单位,评估该格子对于己方、和敌方的价值。

举例来说,如果在此处落子,敌方可以构成五子连珠,那么对于地方而言这是非常高价值的格子,那么在己方回合,当务之急是在此处落子,阻止对方胜利,除非在其它位置落子己方可以胜出。

对此,我们可以对棋盘上每一个可行位置进行打分,评估其对于己方、敌方的价值。

如何定义该位置对己方的价值?


一枚棋子可以在四个方向上与其它棋子连成五子,即:水平、竖直、对角线、主对角线

可以采用如下方法判断在某一具体方向上的价值

  1. 在四个方向中选择某一方向
  2. 向正方向、负方向分别查找4格,如遇到空格或敌方棋子则提前停止
  3. 统计己方棋子个数,以及两端的被遮拦情况。

例如对于下图,在该处落子后,形成水平方向上的两子连珠,且一端有遮拦一端无遮拦

一共可能形成如下几种情形,我们可以依据经验公式评估其价值。

子数 1子 2子 3子 4子 5子
无遮拦 MAX
一端遮拦 - -
两端遮拦 - - - -

'-' 表明该位置在该方向上具有的价值较低,不予考虑。然而,如果其他方向上的情况更有利,那么该位置的价值仍然可能非常高。。

接下来,我们可以讨论棋子在多个方向上的价值,一般来说,仅需要考虑最高价值的两个方向。

这是因为两个活三(无遮拦的三子连珠)足以致胜,三个活三并没有明显优势。

价值 最优方向 次优方向
Lv1 MAX ?
Lv1 ?
Lv2
Lv3
Lv3 -
Lv4
Lv4 -
Lv4 - -

“?” 指代任意情况,例如(MAX-?)对应了(MAX-MAX)、(MAX-①)、(MAX-②)、(MAX-③)、(MAX-'-')

该定义方式将行为的优先级分为了四个等级

  • Lv1:下子直接取胜,或在一回合内取胜。
  • Lv2:下在大概率在若干回合内取胜。
  • Lv3:能够迫使对方一直防御。
  • Lv4:收益较低。

如何综合攻防?


若要综合攻防,必须将具体位置对敌方的价值考虑进去。倘若某一位置对敌方来说是高价值的,那我们在此处落子可以破坏敌方阵型,削弱敌方价值,同样我们可以给出如下价值表

综合价值排序 己方价值 敌方价值 对应的奖励数值
1 Lv1 ? \(2^{20}\)
2 ? Lv1 \(2^{16}\)
3 Lv2 ? \(2^{12}\)
4 Lv2 \(2^{8}\)
5 Lv3 \(2^{4}\)
6 Lv4 \(2^{0}\)

“?” 指代任意情况,例如(Lv1-?)对应了(Lv1-Lv1)、(Lv1-Lv2)、(Lv1-Lv3)、(Lv1-Lv4)

在进行判断时,应当从上往下逐一判断。

这里给出的奖励数值仅供参考。

总结


在本小节中,我们精心构建了一种全新的综合评估方法,旨在全面衡量棋盘上的每个格子对于己方和敌方的战略价值。通过设计一系列精细的量化指标,我们赋予了AI/计算机深入解读棋盘格局的能力,使其能够准确判断每个格子的具体价值。这一方法为AI/计算机制定决策提供了坚实的数据支撑。

行为集规定与决策制定

为了使AI做出高效的决策,我们首先需要定义一套合适且简洁的行为集合。这意味着AI在做出选择时,不必每次都逐一考虑棋盘上的所有位置。在此基础上,我们需要开发一种策略,帮助AI从众多可能的决策中筛选出最为恰当的一个。通过这种方式,AI能够在复杂的环境中迅速而准确地做出最佳决策。

ROI 感兴趣区域


倘若上一轮你在棋盘中心落子,那么下一轮你不应当在棋盘的最角落落子。

一般来说,在落子时,只有与已有棋子(无论是己方还是敌方)邻接的位子才具有价值,首先我们定义邻接。

考虑棋盘上只有一子的情形,规划出与其具有高价值“联动”的区域如下:

可以给出更具体的定义:

倘若一个格子位于另一格子的水平、竖直、主对角线或副对角线方向上,并且两格子距离小于等于2,那么称这两个格子为邻接关系。进一步的,称距离为1为强邻接,距离为2为弱邻接。

进一步的,我们定义感兴趣区域如下:

满足以下要求之一的空格子为感兴趣区域:

  1. 该格子是棋盘正中心
  2. 该格子与至少一个己方棋子所处格子存在邻接关系。
  3. 该格子与至少一个敌方棋子所处格子存在强邻接关系。

下图给出了己方落子ROI区域的示例,其中红色为己方棋子,蓝色为对方棋子,灰色表示感兴趣区域。

决策进行


在进行决策前,我们可以评估感兴趣区域中所有格子的价值,假定ROI中格子的个数是\(N\),格子的价值分别是\(x_0, x_1, ..., x_{N-1}\),我们可以采用下述两种方法选择决策

硬最大值 hardmax

选择奖励最大的决策,即

\[h(\mathbf{x}) = \arg\max_{i} x_i
\]

软最大值 hardmax

不同于硬最大值,软最大值以一定几率接受非最优解,其包含一个常量\(K\),常量K越大表示对低价值决策的接受程度越大,当常量\(K\to 0\)时,软最大值退化为硬最大值;当常量\(K\to +\infty\)时,软最大值退化为随机抽取

\[\text{softmax}(x_i) = \frac{e^{x_i/K}}{\sum_{j=1}^N e^{x_j/K}}
\]

结语

下一篇中我们将继续讨论如何训练AI。

五子棋AI:实现逻辑与相关背景探讨(上)的更多相关文章

  1. .NET同步与异步之相关背景知识(六)

    在之前的五篇随笔中,已经介绍了.NET 类库中实现并行的常见方式及其基本用法,当然.这些基本用法远远不能覆盖所有,也只能作为一个引子出现在这里.以下是前五篇随笔的目录: .NET 同步与异步之封装成T ...

  2. 五子棋AI清月连珠开源

    经过差不多两年的业余时间学习和编写,最近把清月连珠的无禁手部分完善得差不多了.这中间进行了很多思考,也有很多错误认识,到现在有一些东西还没有全面掌握,所以想通过开源于大家共同交流. 最近一直发表一些五 ...

  3. 使用QT creator实现一个五子棋AI包括GUI实现(8K字超详细)

    五子棋AI实现 五子棋游戏介绍 五子棋的定义 五子棋是全国智力运动会竞技项目之一,是具有完整信息的.确定性的.轮流行动的.两个游戏者的零和游戏.因此,五子棋是一个博弈问题. 五子棋的玩法 五子棋有两种 ...

  4. 五子棋AI大战OC实现

    Gobang 五子棋AI大战,该项目主要用到MVC框架,用算法搭建AI实现进攻或防守 一.项目介绍 1.地址: github地址:Gobang 2.效果图: 二.思路介绍 大概说下思路,具体看代码实现 ...

  5. 五子棋AI教程

    https://github.com/Chuck-Ai/gobang 我写了非常详细的中文教程,教你如何一步步编写自己的五子棋AI: 五子棋AI设计教程第二版一:前言 五子棋AI设计教程第二版二:博弈 ...

  6. 【五子棋AI循序渐进】——开局库

    首先,对前面几篇当中未修复的BUG致歉,在使用代码时请万分小心…………尤其是前面关于VCF\VCT的一些代码和思考,有一些错误.虽然现在基本都修正了,但是我的程序还没有经过非常大量的对局,在这之前,不 ...

  7. {前端CSS} 语法 Css的几种引入方式 css选择器 选择器的优先级 CSS属性相关 背景属性 边框 CSS盒子模型 清除浮动 overflow溢出属性  定位(position)z-index

    前端CSS CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素,给HTML设置样式,让它更加美观. 当浏览器读到一个样式表,它就会按照这个样式表来对文 ...

  8. 【五子棋AI循序渐进】——多线程搜索

    关于多线程搜索,有很多方法来实现,很多文章推荐基于MTD(F)的方式.好处不言而喻,不过我的程序中采用的是基于PVS的多线程搜索.实现起来主要是这几个方面问题需要解决: 1.置换表的互斥访问. 2.局 ...

  9. 【五子棋AI循序渐进】关于VCT,VCF的思考和核心代码

    前面几篇发布了一些有关五子棋的基本算法,其中有一些BUG也有很多值得再次思考的问题,在框架和效果上基本达到了一个简单的AI的水平,当然,我也是初学并没有掌握太多的高级技术.对于这个程序现在还在优化当中 ...

  10. 人机ai五子棋 ——五子棋AI算法之Java实现

    人机ai五子棋 下载:chess.jar (可直接运行) 源码:https://github.com/xcr1234/chess 其实机器博弈最重要的就是打分,分数也就是权重,把棋子下到分数大的地方, ...

随机推荐

  1. SpringBoot 启动时报错Unable to start embedded Tomcat

    导读 最近公司有个gradle构建的工程,需要改造成maven方式构建(点我直达).转为maven后,启动时一直报tomcat错误,最终排查是因为servlet-api这个包导致的依赖冲突,将这个依赖 ...

  2. mac idea 配置Tomcat

    官网下载Tomcat 下载地址:点我直达 配置Idea 设置Application Servers 操作步骤:Intellij IDEA->Preferences->Application ...

  3. 薅 AWS 羊毛的船新方式,以 ChatBot 为例

    还在担心一年免费服务器到期后该怎么办?(Solo社区 投稿) 网上绝大多数薅 AWS 羊毛的教程都是在教大家如何申请创建一年免费的 VPS,太 OUT 了!就问一个问题,一年到期了那咋办? 其实,除了 ...

  4. Jenkins插件管理(Manager Plugins)【快速提升项目构建和部署实施的工作效率】

    Jenkins 是一个很棒的开源自动化平台.它有一些开箱即用的强大功能.然而,在我看来,让它脱颖而出的是它的社区和它开发的插件.有超过一千个插件可用于支持几乎所有用于构建.部署和自动化项目的技术.工具 ...

  5. oeasy教您玩转vim - 11 - # 向前向后

    向前向后 回忆上节课内容 我们上次强化了起手势 回忆了基本的移动方式 hjkl 除 hjkl 外,据说还有更厉害的移动方式 是什么呢? 下素材 #这个素材,我们下载过,重温一下 wget github ...

  6. CF709B 题解

    洛谷链接&CF 链接 本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读. 题目简述 给定 \(N\) 个点,在一条数轴上,位置为 \(x_1,-,x_n\),你的位置为 \(p\) ...

  7. EFCore DbFirst从数据库生成实体类

    1.点击"工具"->"NuGet包管理器"->"程序包管理器控制台" 分别安装以下几个包 Mysql 版本: Install-P ...

  8. Ubuntu16.04升级openssh-9.8p1

    7月1日OpenSSH官方发布安全更新,忙着处理的同时记录一下升级过程. 系统环境 root@NServer:~# cat /proc/version Linux version 3.4.113-su ...

  9. 常回家看看之largebin_attack

    常回家看看之largebin_attack 先简单介绍一下什么是largebin largebin 是 glibc 的 malloc 实现中用于管理大块内存的一种数据结构.在 glibc 的内存分配中 ...

  10. C# 通过反射(Reflection)调用不同名泛型方法

    概述 由于工作需要,需要通过数据类型和方法名控制方法走向 用到的数据类型有8种(string,Int16,Int32,Int64,Boolean,Byte,Single,Double) 读取的方法(参 ...