Scrapy框架的使用
- pySpider
- 什么是框架?
- 就是一个具有很强通用性且集成了很多功能的项目模板(可以被应用在各种需求中)
- scrapy集成好的功能:
- 高性能的数据解析操作(xpath)
- 高性能的数据下载
- 高性能的持久化存储
- 中间件
- 全栈数据爬取操作
- 分布式:redis
- 请求传参的机制(深度爬取)
- scrapy中合理的应用selenium
- 环境的安装
a. pip3 install wheel b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl d. pip3 install pywin32 e. pip3 install scrapy - 创建工程
- scrapy startproject ProName
- cd ProName
- scrapy genspider spiderName www.xxx.com :创建爬虫文件
- 执行:scrapy crawl spiderName
- settings:
- 不遵从robots协议
- UA伪装
- LOG_LEVEL = 'ERROR'
- LOG_FILE = 'logging.log' - scrapy的数据解析
- extract():列表是有多个列表元素
- extract_first():列表元素只有单个
- scrapy的持久化存储
- 基于终端指令:
- 只可以将parse方法的返回值存储到磁盘文件中
- scrapy crawl first -o file.csv
- 基于管道:pipelines.py
- 编码流程:
- 1.数据解析
- 2.在item的类中定义相关的属性
- 3.将解析的数据存储封装到item类型的对象中.item['p']
- 4.将item对象提交给管道
- 5.在管道类中的process_item方法负责接收item对象,然后对item进行任意形式的持久化存储
- 6.在配置文件中开启管道
- 细节补充:
- 管道文件中的一个管道类表示将数据存储到某一种形式的平台中。
- 如果管道文件中定义了多个管道类,爬虫类提交的item会给到优先级最高的管道类。
- process_item方法的实现中的return item的操作表示将item传递给下一个即将被执行的管道类

实例:抓取虎牙直播名称,直播者昵称和热度

第一种持久化方式(基于终端):

hy.py实例代码:

# -*- coding: utf-8 -*-
import scrapy
class HySpider(scrapy.Spider):
name = 'hy'
# allowed_domains = ['www.xx.com']
start_urls = ['https://www.huya.com/g/3203'] def parse(self, response):
li_list=response.xpath('//*[@id="js-live-list"]/li')
data=[]
for li in li_list:
title=li.xpath("./a[2]/text()").extract_first()
nick=li.xpath("./span/span[1]/i/text()").extract_first()
hot=li.xpath("./span/span[2]/i[2]/text()").extract_first()
dic={"title":title,"nick":nick,"hot":hot}
data.append(dic)
return data

在pycharm终端输入命令:scrapy crawl hy -o huya.csv 回车执行即可。

第二种持久化方式(基于管道):

hy.py代码:

# -*- coding: utf-8 -*-
import scrapy
from huya.items import HuyaItem
class HySpider(scrapy.Spider):
name = 'hy'
# allowed_domains = ['www.xx.com']
start_urls = ['https://www.huya.com/g/3203'] def parse(self, response):
li_list=response.xpath('//*[@id="js-live-list"]/li')
# data=[]*
for li in li_list:
title=li.xpath("./a[2]/text()").extract_first()
nick=li.xpath("./span/span[1]/i/text()").extract_first()
hot=li.xpath("./span/span[2]/i[2]/text()").extract_first()
item=HuyaItem()
item["title"]=title
item["nick"]=nick
item["hot"]=hot
yield item
# dic={"title":title,"nick":nick,"hot":hot}*
# data.append(dic)*
# return data*

item类代码:

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html import scrapy class HuyaItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
title = scrapy.Field()
nick = scrapy.Field()
hot = scrapy.Field()

pipe类代码(同步实例化到本地和mysql中):

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql class HuyaPipeline(object):
def open_spider(self,spider):
print("open_spider start work...")
self.fp=open("huya.txt","w",encoding="utf-8")
def process_item(self, item, spider):
self.fp.write(item["title"]+"--"+item["nick"]+"--"+item["hot"]+"\n")
print(item["title"]+":持久化完毕...")
return item
def close_spider(self,spider):
print("close_spider end work...")
self.fp.close() class mysqlPipeline(object):
def open_spider(self,spider):
print("open_spider start work...")
self.conn=pymysql.Connect(host="127.0.0.1",port=3306,user="root",password="root",db="Spider",charset="utf8")
def process_item(self, item, spider):
sql="insert into huya values ('%s','%s','%s')"%(item["title"],item["nick"],item["hot"])
self.cursor=self.conn.cursor()
try:
self.cursor.execute(sql)
self.conn.commit()
except Exception as e:
self.conn.rollback()
return item
def close_spider(self,spider):
print("close_spider end work...")

setting中需要修改:

ITEM_PIPELINES = {
'huya.pipelines.HuyaPipeline': 300,
'huya.pipelines.mysqlPipeline': 301
}

**如果想要同步持久化到redis中只需要在pipe中添加类:

class RedisPipeLine(object):
conn = None
def open_spider(self,spider):
self.conn = Redis(host='127.0.0.1',port=6379)
def process_item(self,item,spider):
self.conn.lpush('huyaList',item)
return item

**然后修改setting中的ITEM_PIPELINES即可。

Scrapy数据解析和持久化的更多相关文章

  1. 05.Python网络爬虫之三种数据解析方式

    引入 回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指 ...

  2. Python爬虫之三种数据解析方式

    一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...

  3. 05,Python网络爬虫之三种数据解析方式

    回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指定数据 ...

  4. 《Python网络爬虫之三种数据解析方式》

    引入 回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指 ...

  5. python爬虫---爬虫的数据解析的流程和解析数据的几种方式

    python爬虫---爬虫的数据解析的流程和解析数据的几种方式 一丶爬虫数据解析 概念:将一整张页面中的局部数据进行提取/解析 作用:用来实现聚焦爬虫的吧 实现方式: 正则 (针对字符串) bs4 x ...

  6. Python网络爬虫之三种数据解析方式 (xpath, 正则, bs4)

    引入 回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指 ...

  7. 070.Python聚焦爬虫数据解析

    一 聚焦爬虫数据解析 1.1 基本介绍 聚焦爬虫的编码流程 指定url 基于requests模块发起请求 获取响应对象中的数据 数据解析 进行持久化存储 如何实现数据解析 三种数据解析方式 正则表达式 ...

  8. iOS-数据持久化基础-JSON与XML数据解析

    解析的基本概念 所谓“解析”:从事先规定好的格式串中提取数据 解析的前提:提前约定好格式.数据提供方按照格式提供数据.数据获取方按照格式获取数据 iOS开发常见的解析:XML解析.JSON解析 一.X ...

  9. Request模块—数据解析工具

    一.爬虫基本步骤 指定URL信息 发起请求 获取响应数据 对响应数据进行数据解析 持久化存储 二.数据解析 1. 正则表达式 (1) 基本语法 1. 单字符: . : 除换行以外所有字符 [] :[a ...

  10. 数据解析,懒加载,代理ip

    在前面的requests流程中,还缺少了一步重要的流程,就是在持久化存储之前需要进行制定的数据解析.因为在大多数情况下,我们都会使用聚焦爬虫,也就是爬取页面中的指定部分数据值,而不是整个页面的数据. ...

随机推荐

  1. 0x42 数据结构进阶-树状数组

    A题 楼兰图腾 链接:https://ac.nowcoder.com/acm/contest/1032/A 树状数组 + 逆序对 #include<bits/stdc++.h> using ...

  2. POJ - 1113 Wall (凸包模板) Graham Scan 算法实现

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  3. ldap sssd授权linux登录

    业务系统越来越多,服务器也越来越多,本文主要是给企业用户减少账号密码管理难度的. 目的:使用ldap统一管理账号密码,实现单点登录linux. 一点废话,网上找了很多文章,看得云里雾里,搞了几天算是搞 ...

  4. webpack4.0+简要

    一.webpack简介 webpack 是当下十分流行的一款静态模块打包工具,将JS.CSS.HTML.图片等各种静态资源视为一个个模块,通过一个或者多个入口文件通过解析依赖关系生成一个依赖图,最终打 ...

  5. C# 从桌面右下角显示 Popup 窗口提醒

    上图演示 private void display_Click(object sender, EventArgs e) { Frm_Info.Instance().ShowForm();//显示窗体 ...

  6. python之configparser类的使用

    一.定义配置文件格式如下:data.conf [interface] url=http://192.168.37.8:7777/api/mytest2 [switch] switch_car=on [ ...

  7. Go socket 编程源码解析(上)

    0. socket 介绍 Liunx 中一切皆文件.通过文件描述符和系统调用号可以实现对任何设备的访问.同样的,socket 也是一种文件描述符.通过 socket 可以建立网络传输.对于 TCP 和 ...

  8. SV Interface and Program 2

    Clocking:激励的时序 memory检测start信号,当start上升沿的时候,如果write信号拉高之后,将data存储到mem中 start\write\addr\data - 四个信号是 ...

  9. 【ThreadX-GUIX】Azure RTOS GUIX和Azure RTOS GUIX Studio概述

    Azure GUIX嵌入式GUI是Microsoft的高级工业级GUI解决方案,专门针对深度嵌入式,实时和IoT应用程序而设计.Microsoft还提供了名为Azure RTOS GUIX Studi ...

  10. 百度网盘(百度云)SVIP超级会员共享账号每日更新(2024.01.23)

    一.百度网盘SVIP超级会员共享账号 可能很多人不懂这个共享账号是什么意思,小编在这里给大家做一下解答. 我们多知道百度网盘很大的用处就是类似U盘,不同的人把文件上传到百度网盘,别人可以直接下载,避免 ...