#树链剖分,树上启发式合并#CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
分析
考虑回文串当且仅当最多有一个字母出现奇数次,
可以记录某个二进制状态的最大深度,
一种就是点\(x\)到某个点,另一种就是经过点\(x\)的一条路径
在\(x\)的子树中递归实现,重儿子保留,轻儿子将标记清空,
这样时间复杂度可以做到\(O(nlog^2n)\)
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=500011;
struct node{int y,w,next;}e[N];
int k=1,son[N],ans[N],as[N],c[4200011],tt;
int now,dep[N],fat[N],big[N],dis[N],n;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isalnum(c)) c=getchar();
while (isalnum(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed max(int a,int b){return a>b?a:b;}
inline void add(int x,int y,int w){e[++k]=(node){y,w,as[x]},as[x]=k;}
inline void dfs1(int x,int fa){
dep[x]=dep[fa]+1,fat[x]=fa,son[x]=1;
for (rr int i=as[x],mson=-1;i;i=e[i].next)
if (e[i].y!=fa){
dis[e[i].y]=dis[x]^(1<<e[i].w);
dfs1(e[i].y,x),son[x]+=son[e[i].y];
if (son[e[i].y]>mson)
big[x]=e[i].y,mson=son[e[i].y];
}
}
inline void calc(int x){
if (c[dis[x]]) now=max(now,dep[x]+c[dis[x]]-tt);
for (rr int i=0;i<22;++i) if (c[dis[x]^(1<<i)])
now=max(now,dep[x]+c[dis[x]^(1<<i)]-tt);
}
inline void update(int x,int z){
if (z==1) c[dis[x]]=max(c[dis[x]],dep[x]);
else if (!z) calc(x); else c[dis[x]]=0;
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fat[x]) update(e[i].y,z);
}
inline void dfs2(int x,int opt){
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fat[x]&&e[i].y!=big[x]) dfs2(e[i].y,0);
if (big[x]) dfs2(big[x],1); tt=dep[x]<<1;
for (rr int i=as[x];i;i=e[i].next)
now=max(now,ans[e[i].y]);
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=big[x]) update(e[i].y,0),update(e[i].y,1);//统计答案并添加深度
calc(x),c[dis[x]]=max(c[dis[x]],dep[x]),ans[x]=now;//更新该点
if (!opt) update(x,-1),now=0;//如果是轻儿子撤销标记
}
signed main(){
n=iut();
for (rr int i=2;i<=n;++i){
rr int x=iut(),w=iut()-49;
add(x,i,w);
}
dfs1(1,0),dfs2(1,1);
for (rr int i=1;i<=n;++i)
print(ans[i]),putchar(32);
return 0;
}
#树链剖分,树上启发式合并#CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths的更多相关文章
- 【CodeChef EDGEST】Edges in Spanning Trees(树链剖分+树上启发式合并)
点此看题面 大致题意: 给你两棵\(n\)个点的树,对于第一棵树中的每条边\(e_1\),求存在多少条第二棵树中的边\(e_2\),使得第一棵树删掉\(e_1\)加上\(e_2\).第二棵树删掉\(e ...
- Codeforces 1009 F. Dominant Indices(长链剖分/树上启发式合并)
F. Dominant Indices 题意: 给一颗无向树,根为1.对于每个节点,求其子树中,哪个距离下的节点数量最多.数量相同时,取较小的那个距离. 题目: 这类题一般的做法是树上的启发式合并,复 ...
- 【BZOJ-4568】幸运数字 树链剖分 + 线性基合并
4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 238 Solved: 113[Submit][Status ...
- 【BZOJ3307】雨天的尾巴 题解(树链剖分+树上差分)
题目链接 题目大意:给定一颗含有$n$个结点的树,每次选择两个结点$x$和$y$,对从$x$到$y$的路径上发放一带$z$类型的物品.问完成所有操作后每个结点发放最多的时哪种物品. 普通的树链剖分貌似 ...
- BZOJ 3631 松鼠的新家 - 树链剖分 / 树上差分
传送门 分析: 树链剖分:x->y,将x到y的路径加一,并将x端点的答案-1,最后统计答案. 树上差分:x->y,x+1,y+1,lca-1,fa[lca]-1,并将x打上标记,最后统计前 ...
- 【BZOJ-4326】运输计划 树链剖分 + 树上差分 + 二分
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 703 Solved: 461[Submit][Status] ...
- hdu 5893 (树链剖分+合并)
List wants to travel Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/O ...
- 树链剖分学习&BZOJ1036
题目传送门 树链剖分,计算机术语,指一种对树进行划分的算法,它先通过轻重边剖分将树分为多条链,保证每个点属于且只属于一条链,然后再通过数据结构(树状数组.SBT.SPLAY.线段树等)来维护每一条链. ...
- [2016北京集训试题7]thr-[树形dp+树链剖分+启发式合并]
Description Solution 神仙操作orz. 首先看数据范围,显然不可能是O(n2)的.(即绝对不是枚举那么简单的),我们考虑dp. 定义f(x,k)为以x为根的子树中与x距离为k的节点 ...
- CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 树上启发式合并(DSU ON TREE)
题目描述 一棵根为\(1\) 的树,每条边上有一个字符(\(a-v\)共\(22\)种). 一条简单路径被称为\(Dokhtar-kosh\)当且仅当路径上的字符经过重新排序后可以变成一个回文串. 求 ...
随机推荐
- mysql中如何批量生成百万级数据
# 准备 #1. 准备表 create table s1( id int, name varchar(20), gender char(6), email varchar(50), first_nam ...
- 51从零开始用Rust编写nginx,江湖救急,TLS证书快过期了
wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 负载均衡, 静态文件服务器,websocket代理,四层TCP/UDP转发,内网穿透等,会将实 ...
- 【Azure 环境】中国区Azure是否可以根据资源组的模板,生成一个可视化的架构图呢?
问题描述 这是一个国际版链接(https://docs.microsoft.com/en-us/answers/questions/370410/how-to-generate-architectur ...
- 【Azure Developer】使用 Azure Python 查看 Azure 所有的 Alert rule
问题描述 在Azure Alert 门户中,可以列举出所有Azure资源的Alert rule信息,如下图: 如果像通过Python SDK来获取所有的Alert Rule,有什么可以参考的代码吗? ...
- [C++] 代码注入非dll版
目录 前言 需要注意的问题 DLL注入和代码注入区别 代码 解决问题过程 参考 前言 昨天完成了dll注入,今天就完成了代码注入,早知道这个,就应该早点这么做. 需要注意的问题 64位程序只能注入64 ...
- 想做大模型开发前,先来了解一下MoE
为了实现大模型的高效训练和推理,混合专家模型MoE便横空出世. 大模型发展即将进入下一阶段但目前仍面临众多难题.为满足与日俱增的实际需求,大模型参数会越来越大,数据集类型越来越多,从而导致训练难度大增 ...
- Jmeter 之正则表达式的使用
1 背景及用途: html.json数据都可以转化为文本,提供给正则去提取,使用正则可以提取全部数据,这就是正则表达式非常强大的一点. html格式响应更适合用xpath提取,性能比正则好一点 jso ...
- C++ //类模板与友元 //全局函数类内实现 -直接在类内声名由于即可 //全局函数类外实现 -需要提前让编译器知道全局函数的存在
1 //类模板与友元 2 //全局函数类内实现 -直接在类内声名由于即可 3 //全局函数类外实现 -需要提前让编译器知道全局函数的存在 4 5 #include <iostream> 6 ...
- spring源码手写aop
AOP: aop切面编程,其实就是spring增强器的一个扩展,就是通过beanPostProcessor的after后置方式实现的,其中在after中把需要的bean通过放射+动态代理完 ...
- 【主流技术】日常工作中关于 JSON 转换的经验大全(Java)
目录 前言 一.JSON 回顾 1.1结构形式 二.其它类型 -> JSON相关 2.1 JavaBean 转 JsonObject 2.2 JavaBean 转 Json 字符串 2.3 Li ...