题目传送门


分析

前置知识:\(\sum_{d|n}\mu(d)=[n==1]\),\(\sum_{d|n}\mu(d)\frac{n}{d}=\varphi(n)\)

把最小公倍数拆开可以得到

\[=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\left(\frac{ij}{\gcd(i,j)\gcd(i,k)}\right)^{f(type)}
\]

一个一个类型解决,并且拆开分子分母,先看 \(type=0\) 的情况,

分子 \(=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C(ij)=[(A!)^B(B!)^A]^C\)

分母以 \(\gcd(i,j)\) 为例也即是 \(=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\gcd(i,j)\)

枚举 \(d=\gcd(i,j)\) 也即是

\[\large =\left(\prod_{d=1}^{\min\{A,B\}}d^{\sum_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}[\gcd(i,j)==1]}\right)^C
\]
\[\large =\left(\prod_{d=1}^{\min\{A,B\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor\right\}}d^{\mu(t)\left\lfloor\frac{A}{dt}\right\rfloor\left\lfloor\frac{B}{dt}\right\rfloor}\right)^C
\]

枚举 \(i=dt\) 即

\[\large =\left(\prod_{i=1}^{\min\{A,B\}}\left[\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right]^{\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\right)^C
\]

设 \(f(n)=\prod_{d|n}d^{\mu\left(\frac{n}{d}\right)}\),然后整个就可以整除分块。

设 \(S1(A,B)=\prod_{i=1}^{\min\{A,B\}}f(i)^{\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\)

那么合起来当 \(type=0\) 时答案为 \(\large \frac{\left[(A!)^B(B!)^A\right]^C}{S1(A,B)^CS1(A,C)^B}\)

再看 \(type=1\) 的情况,设 \(c2(n)=\binom{n+1}{2}\) 分子为

\[\large =\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C(ij)^{ijk}=\left[\prod_{i=1}^A\left(i^i\right)^{c2(B)}\prod_{j=1}^B\left(j^j\right)^{c2(A)}\right]^{c2(C)}
\]

设 \(g(n)=\prod_{i=1}^n\left(i^i\right)\),那也就是 \(=\left[g(A)^{c2(B)}g(B)^{c2(A)}\right]^{c2(C)}\)

分母同样以 \(\gcd(i,j)\) 为例, 即为 \(\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\gcd(i,j)^{ijk}\)

枚举 \(d=\gcd(i,j)\),也即是

\[\large =(\prod_{d=1}^{\min\{A,B\}}d^{d^2\sum_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}ij[\gcd(i,j)==1]})^{c2(C)}
\]
\[\large =\left(\prod_{d=1}^{\min\{A,B\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor\right\}}d^{(dt)^2\mu(t)\left\lfloor\frac{A}{dt}\right\rfloor\left\lfloor\frac{B}{dt}\right\rfloor}\right)^{c2(C)}
\]

枚举 \(i=dt\) 即

\[\large =\left(\prod_{i=1}^{\min\{A,B\}}\left[\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right]^{i^2\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\right)^{c2(C)}
\]

设 \(S2(A,B)=\prod_{i=1}^{\min\{A,B\}}f(i)^{i^2\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\)

那么合起来当 \(type=1\) 时答案为 \(\large \frac{\left[g(A)^{c2(B)}g(B)^{c2(A)}\right]^{c2(C)}}{S2(A,B)^CS2(A,C)^B}\)

再看 \(type=2\) 的情况,

分子 \(=\prod_{i=1}^{A}\prod_{j=1}^B\prod_{k=1}^C(ij)^{\gcd(i,j,k)}\)

枚举 \(d=\gcd(i,j,k)\),也即是

\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{d}\right\rfloor}(ijd^2)^{d[gcd(i,j,k)==1]}
\]
\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor,\left\lfloor\frac{C}{d}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{dt}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{dt}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{dt}\right\rfloor}(ij(dt)^2)^{d\mu(t)}
\]

枚举 \(o=dt\),也即是

\[\large= \prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(ijo^2)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}=\prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(ij)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]
\[\large=\left(\prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\right)\left(\prod_{o=1}^{\min\{A,B,C\}}\left[\left(\left\lfloor\frac{A}{o}\right\rfloor!\right)^{\left\lfloor\frac{B}{o}\right\rfloor}\left(\left\lfloor\frac{B}{o}!\right\rfloor\right)^{\left\lfloor\frac{A}{o}\right\rfloor}\right]^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\right)
\]

分母如果先枚举 \(\gcd(i,j)\) 里面向下取整的式子无法预处理出来,

以 \(\gcd(i,j)\) 为例,不妨先枚举 \(\gcd(i,j,k)\)

\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{d}\right\rfloor}(d\gcd(i,j))^{d[gcd(i,j,k)==1]}
\]
\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor,\left\lfloor\frac{C}{d}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{dt}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{dt}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{dt}\right\rfloor}(\gcd(i,j)dt)^{d\mu(t)}
\]

枚举 \(o=dt\),也即是

\[\large= \prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(\gcd(i,j)o)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]

实际上由于分子分母都具有 \(\large \prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\)(分母上式要算两次)

设 \(\large S3(A,B,C)=\prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}{\gcd(i,j)}^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\)

所以合起来可以进行第一步化简

继续看分母,枚举 \(d=\gcd(i,j)\)

\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{d=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{od}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{od}\right\rfloor}d^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor[\gcd(i,j)==1]}
\]
\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{d=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{od}\right\rfloor,\left\lfloor\frac{B}{od}\right\rfloor,\left\lfloor\frac{C}{od}\right\rfloor\right\}} d^{\varphi(o)\mu(t)\left\lfloor\frac{C}{o}\right\rfloor\left\lfloor\frac{A}{odt}\right\rfloor\left\lfloor\frac{B}{odt}\right\rfloor}
\]

枚举 \(i=dt\),则

\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}{\left(\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right)}^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}
\]
\[\large =\prod_{o=1}^{\min\{A,B,C\}}\left(\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}f(i)^{\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}\right)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]

那么 \(\large S3(A,B,C)=\prod_{o=1}^{\min\{A,B,C\}}\left(\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}f(i)^{\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}\right)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\)

合起来当 \(type=2\) 时答案为

\[\large =\frac{\prod_{o=1}^{\min\{A,B,C\}}\left[\left(\left\lfloor\frac{A}{o}\right\rfloor!\right)^{\left\lfloor\frac{B}{o}\right\rfloor}\left(\left\lfloor\frac{B}{o}!\right\rfloor\right)^{\left\lfloor\frac{A}{o}\right\rfloor}\right]^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}}{S3(A,B,C)S3(A,C,B)}
\]

以上需要预处理的函数都可以在 \(O(n\log{n})\) 内预处理出来,瓶颈时间复杂度即求 \(S3(A,B,C)\) 时为 \(O(Tn^{\frac{3}{4}}\log{n})\)


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
const int N=100011;
int mu[N],phi[N],fac[N],inv[N],prime[N],c2[N];
int Cnt,f[N],F[N],invf[N],g[N],invF[N],T,mod,Phi;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
int mo(int x,int y){return x+y>=Phi?x+y-Phi:x+y;}
int min(int a,int b){return a<b?a:b;}
void Pro(int n){
mu[1]=phi[1]=fac[0]=fac[1]=inv[0]=inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
for (int i=2;i<=n;++i){
if (!phi[i]) prime[++Cnt]=i,phi[i]=i-1,mu[i]=-1;
for (int j=1;j<=Cnt&&prime[j]<=n/i;++j){
phi[i*prime[j]]=phi[i]*phi[prime[j]];
if (i%prime[j]==0){
phi[i*prime[j]]+=phi[i];
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for (int i=1;i<=n;++i) phi[i]=mo(phi[i],phi[i-1]);
for (int i=1;i<=n;++i) c2[i]=(c2[i-1]+i)%Phi;
for (int i=0;i<=n;++i) f[i]=1,g[i]=ksm(i,i);
for (int i=1;i<=n;++i) g[i]=1ll*g[i-1]*g[i]%mod;
for (int i=1;i<=n;++i)
for (int j=i;j<=n;j+=i)
if (mu[j/i]==1) f[j]=1ll*f[j]*i%mod;
else if (mu[j/i]==-1) f[j]=1ll*f[j]*inv[i]%mod;
for (int i=0;i<=n;++i) F[i]=ksm(f[i],1ll*i*i%Phi);
for (int i=1;i<=n;++i) f[i]=1ll*f[i-1]*f[i]%mod;
for (int i=1;i<=n;++i) F[i]=1ll*F[i-1]*F[i]%mod;
for (int i=1;i<=n;++i) inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (int i=0;i<=n;++i) invf[i]=ksm(f[i],mod-2);
for (int i=0;i<=n;++i) invF[i]=ksm(F[i],mod-2);
}
int query1(int n,int m){
int t=min(n,m),ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=1ll*ans*ksm(1ll*f[r]*invf[l-1]%mod,1ll*(n/l)*(m/l)%Phi)%mod;
}
return ans;
}
int query2(int n,int m){
int t=min(n,m),ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=1ll*ans*ksm(1ll*F[r]*invF[l-1]%mod,1ll*c2[n/l]*c2[m/l]%Phi)%mod;
}
return ans;
}
int query3(int A,int B,int C){
int t=min(A,min(B,C)),ans=1,Ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(A/(A/l),min(B/(B/l),C/(C/l)));
int _A=A/l,_B=B/l,_C=C/l,sum=1,tt=1ll*mo(phi[r],Phi-phi[l-1])*(C/l)%Phi;
Ans=1ll*Ans*ksm(1ll*ksm(fac[A/l],B/l)*ksm(fac[B/l],A/l)%mod,tt)%mod;
for (int L=1,R;L<=_A&&L<=_B;L=R+1)
R=min(_A/(_A/L),_B/(_B/L)),sum=1ll*sum*ksm(1ll*f[R]*invf[L-1]%mod,1ll*(_A/L)*(_B/L)%Phi)%mod;
ans=1ll*ans*ksm(sum,tt)%mod,sum=1,tt=1ll*mo(phi[r],Phi-phi[l-1])*(B/l)%Phi;
for (int L=1,R;L<=_A&&L<=_C;L=R+1)
R=min(_A/(_A/L),_C/(_C/L)),sum=1ll*sum*ksm(1ll*f[R]*invf[L-1]%mod,1ll*(_A/L)*(_C/L)%Phi)%mod;
ans=1ll*ans*ksm(sum,tt)%mod;
}
return 1ll*Ans*ksm(ans,mod-2)%mod;
}
int main(){
T=iut(),mod=iut(),Phi=mod-1,Pro(N-11);
for (int i=1;i<=T;++i){
int A=iut(),B=iut(),C=iut();
print(1ll*ksm(1ll*ksm(fac[A],B)*ksm(fac[B],A)%mod,C)*ksm(1ll*ksm(query1(A,B),C)*ksm(query1(A,C),B)%mod,mod-2)%mod),putchar(32);
print(1ll*ksm(1ll*ksm(g[A],c2[B])*ksm(g[B],c2[A])%mod,c2[C])*ksm(1ll*ksm(query2(A,B),c2[C])*ksm(query2(A,C),c2[B])%mod,mod-2)%mod);
putchar(32),print(query3(A,B,C)),putchar(10);
}
return 0;
}

#莫比乌斯反演,欧拉函数#洛谷 5518 [MtOI2019]幽灵乐团的更多相关文章

  1. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  2. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  3. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  4. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  5. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  7. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  8. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  9. BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...

  10. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

随机推荐

  1. [超实用插件]在Visual Studio中查看EF Core查询计划

    前言 EF Core是我们.NET开发中比较常用的一款ORM框架,今天我们分享一款可以直接在Visual Studio中查看EF Core查询计划调试器可视化工具(帮助开发者分析和优化数据库查询性能) ...

  2. django中使用celery异步发送邮件

    申请163网易发送邮件权限 在django中settings配置文件 #配置邮件服务器 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBac ...

  3. 在RecyclerView.Adapter中使用 ViewBinding 的一个注意点

    使用 viewpager2 时遇到如下错误, 使用 recyclerview 也有可能会遇到 : 2022-02-10 14:15:43.510 12151-12151/com.sharpcj.dem ...

  4. github.com/mitchellh/mapstructure 教程

    官网链接: github.com/mitchellh/mapstructure 本文只是简单的记录下 mapstructure 库的简单使用,想更加详细的学习,点击 Godoc 学习吧. 文中内容基本 ...

  5. 【Azure Redis 缓存】Azure Reids是否可以开启慢日志(slowlog)和执行config指令

    问题描述 使用Azure Redis,是否可以开启慢日志来查看最近时间中执行比较耗时的指令呢? 同时,如何执行Redis的Config只能来修改配置呢? 根本原因 一:Azure Reids通过Red ...

  6. BeanShell Sample 如何使用?

    一 引入: eanShell Sample主要用于生成一些逻辑复杂的数据,例如用于加解密数据: **每次调用前重置bsh.Interpreter:每个BeanShell副本都有自己的解释器副本(每个线 ...

  7. Python函数对象与闭包函数

    [一]函数对象 函数对象指的是函数可以被当做 数据 来处理,具体可以分为四个方面的使用 [1]函数可以被引用 def add(x,y): return x + y func = add res = f ...

  8. Zabbix6.0使用教程 (四)—zabbix6.0从源代码安装

    接上篇zabbix部署安装前置要求,本期我们将先讲讲如何从源代码安装zabbix6.0,还在为如何安装使用zabbix的小伙伴可以仔细看看. 一. 安装Zabbix守护进程 1 下载源代码压缩包 前往 ...

  9. 流数据库-RisingWave

    参考: https://docs.risingwave.com/docs/current/architecture/ https://www.risingwavetutorial.com/docs/i ...

  10. IDEA/Android Studio的gradle控制台输出中文乱码问题解决

    原文地址: IDEA/Android Studio的gradle控制台输出中文乱码问题解决 - Stars-One的杂货小窝 在项目中,有使用到Gradle自定义脚本,会有些输出日志,但是输出中文就变 ...