题目传送门


分析

前置知识:\(\sum_{d|n}\mu(d)=[n==1]\),\(\sum_{d|n}\mu(d)\frac{n}{d}=\varphi(n)\)

把最小公倍数拆开可以得到

\[=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\left(\frac{ij}{\gcd(i,j)\gcd(i,k)}\right)^{f(type)}
\]

一个一个类型解决,并且拆开分子分母,先看 \(type=0\) 的情况,

分子 \(=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C(ij)=[(A!)^B(B!)^A]^C\)

分母以 \(\gcd(i,j)\) 为例也即是 \(=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\gcd(i,j)\)

枚举 \(d=\gcd(i,j)\) 也即是

\[\large =\left(\prod_{d=1}^{\min\{A,B\}}d^{\sum_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}[\gcd(i,j)==1]}\right)^C
\]
\[\large =\left(\prod_{d=1}^{\min\{A,B\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor\right\}}d^{\mu(t)\left\lfloor\frac{A}{dt}\right\rfloor\left\lfloor\frac{B}{dt}\right\rfloor}\right)^C
\]

枚举 \(i=dt\) 即

\[\large =\left(\prod_{i=1}^{\min\{A,B\}}\left[\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right]^{\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\right)^C
\]

设 \(f(n)=\prod_{d|n}d^{\mu\left(\frac{n}{d}\right)}\),然后整个就可以整除分块。

设 \(S1(A,B)=\prod_{i=1}^{\min\{A,B\}}f(i)^{\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\)

那么合起来当 \(type=0\) 时答案为 \(\large \frac{\left[(A!)^B(B!)^A\right]^C}{S1(A,B)^CS1(A,C)^B}\)

再看 \(type=1\) 的情况,设 \(c2(n)=\binom{n+1}{2}\) 分子为

\[\large =\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C(ij)^{ijk}=\left[\prod_{i=1}^A\left(i^i\right)^{c2(B)}\prod_{j=1}^B\left(j^j\right)^{c2(A)}\right]^{c2(C)}
\]

设 \(g(n)=\prod_{i=1}^n\left(i^i\right)\),那也就是 \(=\left[g(A)^{c2(B)}g(B)^{c2(A)}\right]^{c2(C)}\)

分母同样以 \(\gcd(i,j)\) 为例, 即为 \(\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\gcd(i,j)^{ijk}\)

枚举 \(d=\gcd(i,j)\),也即是

\[\large =(\prod_{d=1}^{\min\{A,B\}}d^{d^2\sum_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}ij[\gcd(i,j)==1]})^{c2(C)}
\]
\[\large =\left(\prod_{d=1}^{\min\{A,B\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor\right\}}d^{(dt)^2\mu(t)\left\lfloor\frac{A}{dt}\right\rfloor\left\lfloor\frac{B}{dt}\right\rfloor}\right)^{c2(C)}
\]

枚举 \(i=dt\) 即

\[\large =\left(\prod_{i=1}^{\min\{A,B\}}\left[\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right]^{i^2\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\right)^{c2(C)}
\]

设 \(S2(A,B)=\prod_{i=1}^{\min\{A,B\}}f(i)^{i^2\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\)

那么合起来当 \(type=1\) 时答案为 \(\large \frac{\left[g(A)^{c2(B)}g(B)^{c2(A)}\right]^{c2(C)}}{S2(A,B)^CS2(A,C)^B}\)

再看 \(type=2\) 的情况,

分子 \(=\prod_{i=1}^{A}\prod_{j=1}^B\prod_{k=1}^C(ij)^{\gcd(i,j,k)}\)

枚举 \(d=\gcd(i,j,k)\),也即是

\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{d}\right\rfloor}(ijd^2)^{d[gcd(i,j,k)==1]}
\]
\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor,\left\lfloor\frac{C}{d}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{dt}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{dt}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{dt}\right\rfloor}(ij(dt)^2)^{d\mu(t)}
\]

枚举 \(o=dt\),也即是

\[\large= \prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(ijo^2)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}=\prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(ij)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]
\[\large=\left(\prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\right)\left(\prod_{o=1}^{\min\{A,B,C\}}\left[\left(\left\lfloor\frac{A}{o}\right\rfloor!\right)^{\left\lfloor\frac{B}{o}\right\rfloor}\left(\left\lfloor\frac{B}{o}!\right\rfloor\right)^{\left\lfloor\frac{A}{o}\right\rfloor}\right]^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\right)
\]

分母如果先枚举 \(\gcd(i,j)\) 里面向下取整的式子无法预处理出来,

以 \(\gcd(i,j)\) 为例,不妨先枚举 \(\gcd(i,j,k)\)

\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{d}\right\rfloor}(d\gcd(i,j))^{d[gcd(i,j,k)==1]}
\]
\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor,\left\lfloor\frac{C}{d}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{dt}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{dt}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{dt}\right\rfloor}(\gcd(i,j)dt)^{d\mu(t)}
\]

枚举 \(o=dt\),也即是

\[\large= \prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(\gcd(i,j)o)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]

实际上由于分子分母都具有 \(\large \prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\)(分母上式要算两次)

设 \(\large S3(A,B,C)=\prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}{\gcd(i,j)}^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\)

所以合起来可以进行第一步化简

继续看分母,枚举 \(d=\gcd(i,j)\)

\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{d=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{od}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{od}\right\rfloor}d^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor[\gcd(i,j)==1]}
\]
\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{d=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{od}\right\rfloor,\left\lfloor\frac{B}{od}\right\rfloor,\left\lfloor\frac{C}{od}\right\rfloor\right\}} d^{\varphi(o)\mu(t)\left\lfloor\frac{C}{o}\right\rfloor\left\lfloor\frac{A}{odt}\right\rfloor\left\lfloor\frac{B}{odt}\right\rfloor}
\]

枚举 \(i=dt\),则

\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}{\left(\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right)}^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}
\]
\[\large =\prod_{o=1}^{\min\{A,B,C\}}\left(\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}f(i)^{\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}\right)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]

那么 \(\large S3(A,B,C)=\prod_{o=1}^{\min\{A,B,C\}}\left(\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}f(i)^{\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}\right)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\)

合起来当 \(type=2\) 时答案为

\[\large =\frac{\prod_{o=1}^{\min\{A,B,C\}}\left[\left(\left\lfloor\frac{A}{o}\right\rfloor!\right)^{\left\lfloor\frac{B}{o}\right\rfloor}\left(\left\lfloor\frac{B}{o}!\right\rfloor\right)^{\left\lfloor\frac{A}{o}\right\rfloor}\right]^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}}{S3(A,B,C)S3(A,C,B)}
\]

以上需要预处理的函数都可以在 \(O(n\log{n})\) 内预处理出来,瓶颈时间复杂度即求 \(S3(A,B,C)\) 时为 \(O(Tn^{\frac{3}{4}}\log{n})\)


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
const int N=100011;
int mu[N],phi[N],fac[N],inv[N],prime[N],c2[N];
int Cnt,f[N],F[N],invf[N],g[N],invF[N],T,mod,Phi;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
int mo(int x,int y){return x+y>=Phi?x+y-Phi:x+y;}
int min(int a,int b){return a<b?a:b;}
void Pro(int n){
mu[1]=phi[1]=fac[0]=fac[1]=inv[0]=inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
for (int i=2;i<=n;++i){
if (!phi[i]) prime[++Cnt]=i,phi[i]=i-1,mu[i]=-1;
for (int j=1;j<=Cnt&&prime[j]<=n/i;++j){
phi[i*prime[j]]=phi[i]*phi[prime[j]];
if (i%prime[j]==0){
phi[i*prime[j]]+=phi[i];
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for (int i=1;i<=n;++i) phi[i]=mo(phi[i],phi[i-1]);
for (int i=1;i<=n;++i) c2[i]=(c2[i-1]+i)%Phi;
for (int i=0;i<=n;++i) f[i]=1,g[i]=ksm(i,i);
for (int i=1;i<=n;++i) g[i]=1ll*g[i-1]*g[i]%mod;
for (int i=1;i<=n;++i)
for (int j=i;j<=n;j+=i)
if (mu[j/i]==1) f[j]=1ll*f[j]*i%mod;
else if (mu[j/i]==-1) f[j]=1ll*f[j]*inv[i]%mod;
for (int i=0;i<=n;++i) F[i]=ksm(f[i],1ll*i*i%Phi);
for (int i=1;i<=n;++i) f[i]=1ll*f[i-1]*f[i]%mod;
for (int i=1;i<=n;++i) F[i]=1ll*F[i-1]*F[i]%mod;
for (int i=1;i<=n;++i) inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (int i=0;i<=n;++i) invf[i]=ksm(f[i],mod-2);
for (int i=0;i<=n;++i) invF[i]=ksm(F[i],mod-2);
}
int query1(int n,int m){
int t=min(n,m),ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=1ll*ans*ksm(1ll*f[r]*invf[l-1]%mod,1ll*(n/l)*(m/l)%Phi)%mod;
}
return ans;
}
int query2(int n,int m){
int t=min(n,m),ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=1ll*ans*ksm(1ll*F[r]*invF[l-1]%mod,1ll*c2[n/l]*c2[m/l]%Phi)%mod;
}
return ans;
}
int query3(int A,int B,int C){
int t=min(A,min(B,C)),ans=1,Ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(A/(A/l),min(B/(B/l),C/(C/l)));
int _A=A/l,_B=B/l,_C=C/l,sum=1,tt=1ll*mo(phi[r],Phi-phi[l-1])*(C/l)%Phi;
Ans=1ll*Ans*ksm(1ll*ksm(fac[A/l],B/l)*ksm(fac[B/l],A/l)%mod,tt)%mod;
for (int L=1,R;L<=_A&&L<=_B;L=R+1)
R=min(_A/(_A/L),_B/(_B/L)),sum=1ll*sum*ksm(1ll*f[R]*invf[L-1]%mod,1ll*(_A/L)*(_B/L)%Phi)%mod;
ans=1ll*ans*ksm(sum,tt)%mod,sum=1,tt=1ll*mo(phi[r],Phi-phi[l-1])*(B/l)%Phi;
for (int L=1,R;L<=_A&&L<=_C;L=R+1)
R=min(_A/(_A/L),_C/(_C/L)),sum=1ll*sum*ksm(1ll*f[R]*invf[L-1]%mod,1ll*(_A/L)*(_C/L)%Phi)%mod;
ans=1ll*ans*ksm(sum,tt)%mod;
}
return 1ll*Ans*ksm(ans,mod-2)%mod;
}
int main(){
T=iut(),mod=iut(),Phi=mod-1,Pro(N-11);
for (int i=1;i<=T;++i){
int A=iut(),B=iut(),C=iut();
print(1ll*ksm(1ll*ksm(fac[A],B)*ksm(fac[B],A)%mod,C)*ksm(1ll*ksm(query1(A,B),C)*ksm(query1(A,C),B)%mod,mod-2)%mod),putchar(32);
print(1ll*ksm(1ll*ksm(g[A],c2[B])*ksm(g[B],c2[A])%mod,c2[C])*ksm(1ll*ksm(query2(A,B),c2[C])*ksm(query2(A,C),c2[B])%mod,mod-2)%mod);
putchar(32),print(query3(A,B,C)),putchar(10);
}
return 0;
}

#莫比乌斯反演,欧拉函数#洛谷 5518 [MtOI2019]幽灵乐团的更多相关文章

  1. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  2. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  3. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  4. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  5. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  7. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  8. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  9. BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...

  10. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

随机推荐

  1. MySQL的随机排序(random orderby)

    MySQL的随机排序(random orderby)是指在查询数据库时,将结果集以随机的方式排列.这种排序方式可以用于有趣的应用场景,例如实现随机音乐播放.广告推荐等. 要实现MySQL的随机排序,可 ...

  2. Java JVM——6.本地方法接口

    本地方法接口 什么是本地方法? 简单地讲,一个 Native Method 就是一个Java调用非Java代码的接囗.一个 Native Method 是这样一个Java方法:该方法的实现由非Java ...

  3. 在矩池云使用ChatGLM-6B & ChatGLM2-6B

    ChatGLM-6B 和 ChatGLM2-6B都是基于 General Language Model (GLM) 架构的对话语言模型,是清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同 ...

  4. DataGear 制作基于Vue2、Element UI前端框架的数据可视化看板

    DataGear 数据可视化看板内置了一些基本.简单的页面交互组件,当它们无法满足实际看板需求时,可以引入更流行和强大的前端框架. 本文以Vue2.Element UI前端框架为例,介绍如何制作具有更 ...

  5. 【Azure 应用服务】Azure Durable Function(持久函数)在执行Activity Function时候,因为调用函数名称错误而导致长时间无响应问题

    问题描述 在使用Azure Durable Function函数,调用函数链模式来调用多个Activity Function. 函数链:https://docs.azure.cn/zh-cn/azur ...

  6. 【Azure 环境】前端Web通过Azure AD获取Token时发生跨域问题(CORS Error)

    问题描述 前端Web在开发时使用Azure AD中注册Application的方式进行Token获取,遇到了CORS遇到的问题(如下图).随后在AAD增加了单页应用的重定向URL, 依旧还是出现COR ...

  7. Nebula Graph 源码解读系列|客户端的通信秘密——fbthrift

    概述 Nebula Clients 给用户提供了多种编程语言的 API 用于和 Nebula Graph 交互,并且对服务端返回的数据结构进行了重新封装,便于用户使用. 目前 Nebula Clien ...

  8. 【简历模板】极简Markdown程序员简历模板

    前言 最近在找工作,一份好的简历是敲门砖,所以跟大家分享下简洁明了大方MarkDown的简历模板和在线编辑工具 在线工具 冷熊 Java工程师简历模板 下载 点击下载 预览 个人信息 xxx/男/19 ...

  9. 【Flink入门修炼】2-2 Flink State 状态

    什么是状态?状态有什么作用? 如果你来设计,对于一个流式服务,如何根据不断输入的数据计算呢? 又如何做故障恢复呢? 一.为什么要管理状态 流计算不像批计算,数据是持续流入的,而不是一个确定的数据集.在 ...

  10. CefSharp 开发触屏终端遇到的问题记录

    一.背景 最开始准备使用的 Chromely 做一个终端机项目,本来以为挺顺利的一个事情折腾了两天半.由于无法直接控制窗体的属性,最后还是切换到 .NET Framework 4.8 + CefSha ...