介绍

MCXN947

NXP FRDM-MCXN947开发板是一款基于MCXN947 MCU的低成本评估板,MCU集成了双核Arm Cortex-M33微控制器和一个神经处理单元(NPU)。开发板由一个MCXN947控制器和一个64 Mbit外部串行闪存组成。该板还具有P3T1755DP I3C温度传感器,TJA1057GTK/3Z CAN PHY,以太网PHY, SDHC电路(卡槽为DNP), RGB LED,触摸板,高速USB,按钮,和MCU-Link调试接口。该板兼容Arduino屏蔽模块,Pmod板,mikroBUS。该板还支持摄像头模块和NXP低成本LCD模块PAR-LCD-S035

开箱视频

我通过参过RT-Thread社区的活动,拿到了京东的包裹,板子的开箱视频:FRDM-MCXN947开发板开箱_哔哩哔哩_bilibili

开发环境

基本的开发资料有以下几个,软件包或者资料都可以在NXP官网、Keil的官网找到,插一句话,最近Keil免费了

  1. MDK531
  2. NXP.MCXN947_DFP.17.0.0
  3. rt_vsnprintf_full-latest.zip开发包
  4. 官方的文档:UM12018.pdf
  5. RT-Thread GitHub仓库最新代码

开发环境搭建请参考视频:FRDM-MCXN947开发板开发环境上手_哔哩哔哩_bilibili

实验目的

最近南方地区都在下暴雨,气候闷热潮湿,人们出门都在时刻关注天气的变化情况;刚好这个时候RT-Thread社区给我送来一款包装精致的NXP开发板,让我手头上的BME280温湿度气压传感器有了用武之地;BME280采用i2c接口和主机通信,能实时监控室内、室外的温度、湿度、大气压情况,基于它我们能做很多工业、物联网、医疗、汽车方面的应用

实验准备

我们需要准备以下材料

  • NXP FRDM-MCXN947开发板
  • 温湿度气压模块BME280 (i2c接口)
  • SSD1306 OLED模块(i2c接口)
  • 公母头杜邦线若干

模块电路

板载资源

本次实验是通过软件i2c + 硬件i2c方式来进行通信,软件i2c采用引脚P0_4 (SCL)和P0_5 (SDA) ,硬件i2c采用引脚P0_25 (SCL)和P0_24 (SDA),前者位于J9内侧的第8和第9引脚,后者位于J2外侧的第7和第5引脚,引脚图参考如下,注意不要接错

实物连接

软件i2c口接OLED SSD1306模块,硬件i2c口接BME280模块,电源VCC和GND在J8和J6上面都有,千万别接错了!

程序设计

模块配置

克隆rt-thread官方仓库的代码,MCXN947板子的最小例程在bsp\nxp\mcx\mcxn\frdm-mcxn947目录下

git clone https://github.com/RT-Thread/rt-thread.git

用RT-Thread Studio导入frdm-mcxn947工程,然后打开env工具

在env终端输入命令menuconfig,配置rt-thread工程

RT-Thread Components下找到Device DriversSelect进去,软件i2c引脚配置如下

Hardware Drivers Config下找到On-chip Peripheral DriversSelect进去,硬件i2c引脚配置如下

找到RT-Thread online packages -> peripheral libraries and drivers -> ssd1306Select进去,配置SSD1306模块,记得改掉I2c bus name和开启ssd1306的sample选项,这里名称为i2c2,和上面配置的软件i2c名称一致

配置完后通过Exit退出,先更新软件包,再导出为mdk5工程,然后用Keil5打开

pkgs --update
scons --target=mdk5

编译工程

需要注释一些代码确保编译通过

ssd1306_tests.h

ssd1306.h

编码集成

SSD1306

调用初始化接口并设置背景为黑色

ssd1306_Init();
ssd1306_Fill(Black);

绘图接口示范,先往buffer里边填字符串数据,然后设置坐标,再绘制字符

rt_memset(buffer, SIZE, 0);
rt_snprintf(buffer, SIZE, "Temp : %d'C\r\n",(int)temp_act);
ssd1306_SetCursor(2, 26);
ssd1306_WriteString(buffer, Font_6x8, White);

BME280

readCalibrationDatacalibration_Tcalibration_Pcalibration_H用于读取和校准BME280的数据

static unsigned long int hum_raw,temp_raw,pres_raw;
static rt_uint8_t data[8];
static signed long int t_fine;
static uint16_t dig_T1;
static int16_t dig_T2;
static int16_t dig_T3;
static uint16_t dig_P1;
static int16_t dig_P2;
static int16_t dig_P3;
static int16_t dig_P4;
static int16_t dig_P5;
static int16_t dig_P6;
static int16_t dig_P7;
static int16_t dig_P8;
static int16_t dig_P9;
static int8_t dig_H1;
static int16_t dig_H2;
static int8_t dig_H3;
static int16_t dig_H4;
static int16_t dig_H5;
static int8_t dig_H6;
static signed long int temp_cal;
static unsigned long int press_cal,hum_cal;
static double temp_act;
static double press_act;
static double hum_act; static void readCalibrationData()
{
uint8_t data[32];
read_bme280_reg(0x88, data, 24);
read_bme280_reg(0xa1, data + 24, 1);
read_bme280_reg(0xe1, data + 25, 7); dig_T1 = (data[1] << 8) | data[0];
dig_T2 = (data[3] << 8) | data[2];
dig_T3 = (data[5] << 8) | data[4];
dig_P1 = (data[7] << 8) | data[6];
dig_P2 = (data[9] << 8) | data[8];
dig_P3 = (data[11]<< 8) | data[10];
dig_P4 = (data[13]<< 8) | data[12];
dig_P5 = (data[15]<< 8) | data[14];
dig_P6 = (data[17]<< 8) | data[16];
dig_P7 = (data[19]<< 8) | data[18];
dig_P8 = (data[21]<< 8) | data[20];
dig_P9 = (data[23]<< 8) | data[22];
dig_H1 = data[24];
dig_H2 = (data[26]<< 8) | data[25];
dig_H3 = data[27];
dig_H4 = (data[28]<< 4) | (0x0F & data[29]);
dig_H5 = (data[30] << 4) | ((data[29] >> 4) & 0x0F);
dig_H6 = data[31];
} static signed long int calibration_T(signed long int adc_T)
{ signed long int var1, var2, T;
var1 = ((((adc_T >> 3) - ((signed long int)dig_T1<<1))) * ((signed long int)dig_T2)) >> 11;
var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14; t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
} static unsigned long int calibration_P(signed long int adc_P)
{
signed long int var1, var2;
unsigned long int P;
var1 = (((signed long int)t_fine)>>1) - (signed long int)64000;
var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6);
var2 = var2 + ((var1*((signed long int)dig_P5))<<1);
var2 = (var2>>2)+(((signed long int)dig_P4)<<16);
var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18;
var1 = ((((32768+var1))*((signed long int)dig_P1))>>15);
if (var1 == 0)
{
return 0;
}
P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125;
if(P<0x80000000)
{
P = (P << 1) / ((unsigned long int) var1);
}
else
{
P = (P / (unsigned long int)var1) * 2;
}
var1 = (((signed long int)dig_P9) * ((signed long int)(((P>>3) * (P>>3))>>13)))>>12;
var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13;
P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4));
return P;
} static unsigned long int calibration_H(signed long int adc_H)
{
signed long int v_x1; v_x1 = (t_fine - ((signed long int)76800));
v_x1 = (((((adc_H << 14) -(((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) +
((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) *
(((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) *
((signed long int) dig_H2) + 8192) >> 14));
v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4));
v_x1 = (v_x1 < 0 ? 0 : v_x1);
v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);
return (unsigned long int)(v_x1 >> 12);
}

i2c读写接口封装

static int read_bme280_reg(rt_uint8_t reg_addr, rt_uint8_t *data, rt_uint8_t len)
{
struct rt_i2c_msg msgs[2];
msgs[0].addr = BME280_ADDR;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &reg_addr;
msgs[0].len = 1; msgs[1].addr = BME280_ADDR;
msgs[1].flags = RT_I2C_RD;
msgs[1].buf = data;
msgs[1].len = len; if (rt_i2c_transfer(i2c_bus, msgs, 2) == 2)
{
return RT_EOK;
}
else
return -RT_ERROR;
} static int8_t write_bme280_reg(uint8_t reg, uint8_t *data, uint16_t len)
{
rt_uint8_t tmp = reg;
struct rt_i2c_msg msgs[2]; msgs[0].addr = BME280_ADDR; /* Slave address */
msgs[0].flags = RT_I2C_WR; /* Write flag */
msgs[0].buf = &tmp; /* Slave register address */
msgs[0].len = 1; /* Number of bytes sent */ msgs[1].addr = BME280_ADDR; /* Slave address */
msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START; /* Read flag */
msgs[1].buf = data; /* Read data pointer */
msgs[1].len = len; /* Number of bytes read */ if (rt_i2c_transfer(i2c_bus, msgs, 2) != 2)
{
return -RT_ERROR;
} return RT_EOK;
}

init_bme280用于初始化i2c设备

static int init_bme280(void)
{
i2c_bus = (struct rt_i2c_bus_device *) rt_device_find(BME280_I2C_BUS_NAME);
if (i2c_bus == RT_NULL)
{
rt_kprintf("can't find %s device!\n", BME280_I2C_BUS_NAME);
return RT_ERROR;
} rt_uint8_t data;
int size = read_bme280_reg(0xD0, &data, 1);
rt_kprintf("bme280 device id : %x\n", data); uint8_t osrs_t = 1; //Temperature oversampling x 1
uint8_t osrs_p = 1; //Pressure oversampling x 1
uint8_t osrs_h = 1; //Humidity oversampling x 1
uint8_t mode = 3; //Normal mode
uint8_t t_sb = 5; //Tstandby 1000ms
uint8_t filter = 0; //Filter off
uint8_t spi3w_en = 0; //3-wire SPI Disable uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode;
uint8_t config_reg = (t_sb << 5) | (filter << 2) | spi3w_en;
uint8_t ctrl_hum_reg = osrs_h; write_bme280_reg(0xF2, &ctrl_hum_reg, 1);
write_bme280_reg(0xF4, &ctrl_meas_reg, 1);
write_bme280_reg(0xF5, &config_reg, 1); readCalibrationData(); return RT_EOK;
}

将BME280的设置当作一条命令来执行

void run_bme280()
{
bme280_thread = rt_thread_create("bme280", bme280_entry, RT_NULL, 1024, 16, 20);
if(bme280_thread != RT_NULL)
{
rt_thread_startup(bme280_thread);
}
} MSH_CMD_EXPORT(run_bme280, run bme280);

整合代码

以下代码经过测试,可以实现本次实验的所有功能

#include <rtthread.h>
#include <rtdevice.h>
#include "ssd1306.h" #define LED_PIN ((0*32)+10)
#define BME280_I2C_BUS_NAME "i2c1"
#define BME280_ADDR 0x76
#define SIZE 50 static struct rt_i2c_bus_device *i2c_bus;
static rt_thread_t bme280_thread = RT_NULL;
static unsigned long int hum_raw,temp_raw,pres_raw;
static rt_uint8_t data[8]; static signed long int t_fine;
static uint16_t dig_T1;
static int16_t dig_T2;
static int16_t dig_T3;
static uint16_t dig_P1;
static int16_t dig_P2;
static int16_t dig_P3;
static int16_t dig_P4;
static int16_t dig_P5;
static int16_t dig_P6;
static int16_t dig_P7;
static int16_t dig_P8;
static int16_t dig_P9;
static int8_t dig_H1;
static int16_t dig_H2;
static int8_t dig_H3;
static int16_t dig_H4;
static int16_t dig_H5;
static int8_t dig_H6;
static signed long int temp_cal;
static unsigned long int press_cal,hum_cal;
static double temp_act;
static double press_act;
static double hum_act;
static char buffer[SIZE]; static signed long int calibration_T(signed long int adc_T)
{ signed long int var1, var2, T;
var1 = ((((adc_T >> 3) - ((signed long int)dig_T1<<1))) * ((signed long int)dig_T2)) >> 11;
var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14; t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
} static unsigned long int calibration_P(signed long int adc_P)
{
signed long int var1, var2;
unsigned long int P;
var1 = (((signed long int)t_fine)>>1) - (signed long int)64000;
var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6);
var2 = var2 + ((var1*((signed long int)dig_P5))<<1);
var2 = (var2>>2)+(((signed long int)dig_P4)<<16);
var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18;
var1 = ((((32768+var1))*((signed long int)dig_P1))>>15);
if (var1 == 0)
{
return 0;
}
P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125;
if(P<0x80000000)
{
P = (P << 1) / ((unsigned long int) var1);
}
else
{
P = (P / (unsigned long int)var1) * 2;
}
var1 = (((signed long int)dig_P9) * ((signed long int)(((P>>3) * (P>>3))>>13)))>>12;
var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13;
P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4));
return P;
} static unsigned long int calibration_H(signed long int adc_H)
{
signed long int v_x1; v_x1 = (t_fine - ((signed long int)76800));
v_x1 = (((((adc_H << 14) -(((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) +
((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) *
(((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) *
((signed long int) dig_H2) + 8192) >> 14));
v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4));
v_x1 = (v_x1 < 0 ? 0 : v_x1);
v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);
return (unsigned long int)(v_x1 >> 12);
} static int read_bme280_reg(rt_uint8_t reg_addr, rt_uint8_t *data, rt_uint8_t len)
{
struct rt_i2c_msg msgs[2];
msgs[0].addr = BME280_ADDR;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &reg_addr;
msgs[0].len = 1; msgs[1].addr = BME280_ADDR;
msgs[1].flags = RT_I2C_RD;
msgs[1].buf = data;
msgs[1].len = len; if (rt_i2c_transfer(i2c_bus, msgs, 2) == 2)
{
return RT_EOK;
}
else
return -RT_ERROR;
} static int8_t write_bme280_reg(uint8_t reg, uint8_t *data, uint16_t len)
{
rt_uint8_t tmp = reg;
struct rt_i2c_msg msgs[2]; msgs[0].addr = BME280_ADDR; /* Slave address */
msgs[0].flags = RT_I2C_WR; /* Write flag */
msgs[0].buf = &tmp; /* Slave register address */
msgs[0].len = 1; /* Number of bytes sent */ msgs[1].addr = BME280_ADDR; /* Slave address */
msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START; /* Read flag */
msgs[1].buf = data; /* Read data pointer */
msgs[1].len = len; /* Number of bytes read */ if (rt_i2c_transfer(i2c_bus, msgs, 2) != 2)
{
return -RT_ERROR;
} return RT_EOK;
} static void readCalibrationData()
{
uint8_t data[32];
read_bme280_reg(0x88, data, 24);
read_bme280_reg(0xa1, data + 24, 1);
read_bme280_reg(0xe1, data + 25, 7); dig_T1 = (data[1] << 8) | data[0];
dig_T2 = (data[3] << 8) | data[2];
dig_T3 = (data[5] << 8) | data[4];
dig_P1 = (data[7] << 8) | data[6];
dig_P2 = (data[9] << 8) | data[8];
dig_P3 = (data[11]<< 8) | data[10];
dig_P4 = (data[13]<< 8) | data[12];
dig_P5 = (data[15]<< 8) | data[14];
dig_P6 = (data[17]<< 8) | data[16];
dig_P7 = (data[19]<< 8) | data[18];
dig_P8 = (data[21]<< 8) | data[20];
dig_P9 = (data[23]<< 8) | data[22];
dig_H1 = data[24];
dig_H2 = (data[26]<< 8) | data[25];
dig_H3 = data[27];
dig_H4 = (data[28]<< 4) | (0x0F & data[29]);
dig_H5 = (data[30] << 4) | ((data[29] >> 4) & 0x0F);
dig_H6 = data[31];
} static int init_bme280(void)
{
rt_uint8_t data;
int size = read_bme280_reg(0xD0, &data, 1);
rt_kprintf("bme280 device id : %x\n", data); uint8_t osrs_t = 1; //Temperature oversampling x 1
uint8_t osrs_p = 1; //Pressure oversampling x 1
uint8_t osrs_h = 1; //Humidity oversampling x 1
uint8_t mode = 3; //Normal mode
uint8_t t_sb = 5; //Tstandby 1000ms
uint8_t filter = 0; //Filter off
uint8_t spi3w_en = 0; //3-wire SPI Disable uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode;
uint8_t config_reg = (t_sb << 5) | (filter << 2) | spi3w_en;
uint8_t ctrl_hum_reg = osrs_h; write_bme280_reg(0xF2, &ctrl_hum_reg, 1);
write_bme280_reg(0xF4, &ctrl_meas_reg, 1);
write_bme280_reg(0xF5, &config_reg, 1); readCalibrationData(); return RT_EOK;
} static void bme280_entry(void* paremeter)
{
init_bme280(); while(1)
{
read_bme280_reg(0xf7, data, 8);
pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4);
hum_raw = (data[6] << 8) | data[7]; temp_cal = calibration_T(temp_raw);
press_cal = calibration_P(pres_raw);
hum_cal = calibration_H(hum_raw);
temp_act = (double)temp_cal / 100.0;
press_act = (double)press_cal;
hum_act = (double)hum_cal / 1024.0; rt_memset(buffer, SIZE, 0);
rt_snprintf(buffer, SIZE, "Temp : %d'C\r\n",(int)temp_act);
ssd1306_SetCursor(2, 26);
ssd1306_WriteString(buffer, Font_6x8, White); rt_memset(buffer, SIZE, 0);
rt_snprintf(buffer, SIZE, "Humi : %d %\r\n",(int)hum_act);
ssd1306_SetCursor(2, 26 + 10);
ssd1306_WriteString(buffer, Font_6x8, White); rt_memset(buffer, SIZE, 0);
rt_snprintf(buffer, SIZE, "Press : %d Pa\r\n",(int)press_act);
ssd1306_SetCursor(2, 26 + 10 + 10);
ssd1306_WriteString(buffer, Font_6x8, White); rt_thread_mdelay(500);
ssd1306_UpdateScreen();
}
} void run_bme280()
{
bme280_thread = rt_thread_create("bme280", bme280_entry, RT_NULL, 1024, 16, 20);
if(bme280_thread != RT_NULL)
{
rt_thread_startup(bme280_thread);
}
} MSH_CMD_EXPORT(run_bme280, run bme280); int main(void)
{
i2c_bus = (struct rt_i2c_bus_device *) rt_device_find(BME280_I2C_BUS_NAME);
if (i2c_bus == RT_NULL)
{
rt_kprintf("can't find %s device!\n", BME280_I2C_BUS_NAME);
return RT_ERROR;
} ssd1306_Init();
ssd1306_Fill(Black); rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT);
for (;;)
{
rt_pin_write(LED_PIN, PIN_HIGH);
rt_thread_mdelay(500);
rt_pin_write(LED_PIN, PIN_LOW);
rt_thread_mdelay(500);
}
}

实验效果

用串口工具打开开发板对应的串口,命令行输入run_bme280

效果如下,OLED实时展示当前环境的温度、湿度、大气压

总结

  • 技术离不开应用、离不开生活,学习技术是为了更好的服务于社会
  • NXP的硬件i2c比较复杂,官方的demo比较多、配置也复杂,理解起来确实有一点难度,我在用i2c-tool工具的时候遇到了一些问题,目前还在分析、定位中

FRDM-MCXN947开发板之i2c应用的更多相关文章

  1. TPYBoard v202开发板通过I2C协议驱动oled

    最近无聊的时候研究了一下TPYBoard v202开发板,发现网上TPYBoard开发驱动oled的这块资料比较少,本人测试成功后给大家分享一下经验 下面通过代码讲解一下 1.首先需要导包, 在网上下 ...

  2. 基于飞思卡尔i.MX 6Quad Sabrelite开发板的触摸屏调试

    1      概述 本次任务是在飞思卡尔i.MX 6Quqd Sabrelite开发板上调试触屏驱动,触屏芯片是Goodix的gt828芯片,触屏接口是I2C. 操作系统:android 4.0.4 ...

  3. [Intel Edison开发板] 05、Edison开发基于MRAA实现IO控制,特别是UART通信

    一.前言 下面是本系列文章的前几篇: [Intel Edison开发板] 01.Edison开发板性能简述 [Intel Edison开发板] 02.Edison开发板入门 [Intel Edison ...

  4. ARM嵌入式开发板

    iTOP-4412 ARM嵌入式开发板----主要特点 iTOP-4412开发平台是北京迅为电子研发设计的嵌入式开发板平台,核心板配备64位双通道2GB DDR3,16GBEMMC存储,三星原厂S5M ...

  5. AC6102开发板USB3.0测试和使用说明

    AC6102开发板USB3.0测试和使用说明 概述 AC6102上集成了一颗Cypress 推出的高性能USB3.0传输芯片CYUSB3014,Cypress称之为EZ-USBFX3.该芯片性能强劲, ...

  6. 嵌入式Linux开发板

    嵌入式Linux开发板开发介绍: iTOP-4412嵌入式Linux开发板搭载三星Exynos四核处理器,配备1GB内存,4GB固态硬盘EMMC存储,独家配备三星S5M8767电源管理,配备Andro ...

  7. 基于讯为4412开发板的Android开发流程

    讯为4412开发板  使用三星2410芯片,基于arm9架构,由于自己电脑硬件的局限,只能跑Android4.0.3系统. 1.Uboot这个直接使用官方镜像烧写就可以了,一般情况不用去重复烧写. 略 ...

  8. 【学习/研发】嵌入式Linux/Android开发有它就够了——迅为4412开发板

    网站:http://www.topeetboard.com 光盘资料+网盘资料+配套视频+售后支持,助您加速学习研发的进程 产品介绍 iTOP-Exynos4412开发板采用 Exynos4412的主 ...

  9. 迅为三星Exynos 4412开发板四核Cortex-A9ARM安卓linux开发板

    开发板光盘资料包含:原理图(PDF格式).底板PCB(Allegro格式).驱动程序源码.芯片和LCD数据手册.开发环境.产品使用手册. 4412开发板简介: iTOP-Exynos4412开发板采用 ...

  10. x86 构架的 Arduino 开发板Intel Galileo

    RobotPeak是上海的一家硬件创业团队,团队致力于民用机器人平台系统.机器人操作系统(ROS)以及相关设备的设计研发,并尝试将日新月异的机器人技术融入人们的日常生活与娱乐当中.同时,RobotPe ...

随机推荐

  1. ping的常用方法

    ping的常用方法 ping +ip tcping +ip+端口号(例如 tcping 127.0.0.1 8080) telnet +ip+端口号 nc -nzv +ip+端口号(linux用)

  2. 面对大规模 K8s 集群,如何先于用户发现问题?

    简介: 怎样才能在复杂的大规模场景中,做到真正先于用户发现问题呢?下面我会带来我们在管理大规模 ASI 集群过程中对于快速发现问题的一些经验和实践,希望能对大家有所启发. 作者 | 彭南光(光南)来源 ...

  3. 阿里云 Serverless 助力企业全面拥抱云原生

    ​简介:相信随着云计算的发展,Serverless 将成为云时代默认的计算范式,越来越多的企业客户将会采用这个技术. 作者:洛浩 Serverless 应用引擎的组件架构 最早的时候,大家设计软件一般 ...

  4. C++里也有菱形运算符?

    最近在翻<c++函数式编程>的时候看到有一小节在说c++14新增了"菱形运算符".我寻思c++里好像没什么运算符叫这名字啊,而且c++14新增的功能很少,我也不记得有添 ...

  5. R5_ES读写流程

    基本概念 refresh:es接收数据请求时先存入ES进程中的内存 Buffer ,默认每隔一秒(index.refresh_interval:1s)会从内存buffer中将数据写入 os cache ...

  6. MacOS安装gprMax教程

    原文发布于:https://blog.zhaoxuan.site/archives/19.html: 第一时间获取最新文章请关注博客个人站:https://blog.zhaoxuan.site. 1. ...

  7. SHELL脚本获取域名对应的IP地址

    单个获取 编写角本pingip.sh #!/bin/sh ADDR=qq.com TMPSTR=`ping ${ADDR} -c 1 | sed '1{s/[^(]*(//;s/).*//;q}'` ...

  8. Golang ETCD包的安装使用 golang安装etcd第三方库clientv3 报错 解决

    目录 ETCD 官网 视频地址 课件资料 ETCD 日志收集项目 为什么要自己写不用ELK? 项目的架构 上节课项目进度 etcd介绍 安装etcd windows安装 Ubuntu(linux系统) ...

  9. 2019年最新前端面试题,js程序设计题

    都说机会是留给有准备的人的. 一年之计在于春,面对众多的前端技术,需要时刻充电自己. 我现在整理一些前端js面试程序题. 1.判断一个字符串中出现最多的字符,并计算出现的次数? 2.用css伪类实现下 ...

  10. IDEA连接github

    在IDEA中添加github账号: File-->Settings-->Version Control-->GitHub 点击 + 号,添加账号可以选择账号密码登陆或者使用token ...