[ABC265F] Manhattan Cafe
Problem Statement
In an $N$-dimensional space, the Manhattan distance $d(x,y)$ between two points $x=(x_1, x_2, \dots, x_N)$ and $y = (y_1, y_2, \dots, y_N)$ is defined by:
\(\displaystyle d(x,y)=\sum_{i=1}^n \vert x_i - y_i \vert.\)
A point $x=(x_1, x_2, \dots, x_N)$ is said to be a lattice point if the components $x_1, x_2, \dots, x_N$ are all integers.
You are given lattice points $p=(p_1, p_2, \dots, p_N)$ and $q = (q_1, q_2, \dots, q_N)$ in an $N$-dimensional space.
How many lattice points $r$ satisfy $d(p,r) \leq D$ and $d(q,r) \leq D$? Find the count modulo $998244353$.
Constraints
- $1 \leq N \leq 100$
- $0 \leq D \leq 1000$
- $-1000 \leq p_i, q_i \leq 1000$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $D$
$p_1$ $p_2$ $\dots$ $p_N$
$q_1$ $q_2$ $\dots$ $q_N$
Output
Print the answer.
Sample Input 1
1 5
0
3
Sample Output 1
8
When $N=1$, we consider points in a one-dimensional space, that is, on a number line.
$8$ lattice points satisfy the conditions: $-2,-1,0,1,2,3,4,5$.
Sample Input 2
3 10
2 6 5
2 1 2
Sample Output 2
632
Sample Input 3
10 100
3 1 4 1 5 9 2 6 5 3
2 7 1 8 2 8 1 8 2 8
Sample Output 3
145428186
考虑dp,设dp_{i,j,k}表示前 $k$ 位,和串 $p$ 的距离之差为 $i$ ,和串 $q$ 的距离之差为 $j$ 的方案数。
如果把绝对值拆成四种情况来讨论,加上滚动数组,那么可以写出下面这种方法。
#include<bits/stdc++.h>
using namespace std;
const int N=105,M=1005,P=998244353;
int n,d,p[N],q[N],dp[2][M][M],ans;
int main()
{
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++)
scanf("%d",p+i);
for(int i=1;i<=n;i++)
scanf("%d",q+i);
dp[0][0][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=d;j++)
{
for(int k=0;k<=d;k++)
{
dp[i&1][j][k]=0;
for(int l=max(p[i]-j,q[i]-k);l<=min(p[i],q[i]);l++)
{
dp[i&1][j][k]+=dp[i&1^1][j-p[i]+l][k-q[i]+l];
dp[i&1][j][k]%=P;
}
for(int l=max(q[i]-k,p[i]+1);l<=min(q[i]-1,p[i]+j);l++)
{
dp[i&1][j][k]+=dp[i&1^1][j-l+p[i]][k-q[i]+l];
dp[i&1][j][k]%=P;
}
for(int l=max(q[i]+1,p[i]-j);l<=min(p[i]-1,q[i]+k);l++)
{
dp[i&1][j][k]+=dp[i&1^1][j-p[i]+l][k-l+q[i]];
dp[i&1][j][k]%=P;
}
for(int l=max(p[i],q[i])+(p[i]==q[i]);l<=min(p[i]+j,q[i]+k);l++)
{
dp[i&1][j][k]+=dp[i&1^1][j-l+p[i]][k-l+q[i]];
dp[i&1][j][k]%=P;
}
if(i==n)
ans=(ans+dp[i&1][j][k])%P;
}
}
}
printf("%d",ans);
}
发现瓶颈在转移,那么就考虑能不能 \(O(1)\) 转移。
在这四种情况中,有两种情况满足后两个下标之和不变,另两种后两个下标之差不变。考虑在这一点的基础上,使用前缀和。
定义 \(f_{i,j}\) 表示在上一位中,后两个下标差为 \(i\),且第二位下标不超过 \(j\) 的所有dp 值之和,\(s_{i,j}\) 表示在上一位中,后两个下标和为 \(i\),且第二位下标不超过 \(j\) 的所有 \(dp\) 值之和。那么我们在更新 dp 值时分情况用 \(f\) 和 \(s\) 去更新就好了。
代码有些繁琐
#include<bits/stdc++.h>
using namespace std;
const int N=105,M=4005,P=998244353;
int n,d,p[N],q[N],dp[M>>2][M>>2],ans,s[M][M],f[M<<1][M],l,r;
int mo(int x)
{
return (x%P+P)%P;
}
int main()
{
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++)
scanf("%d",p+i);
for(int i=1;i<=n;i++)
scanf("%d",q+i);
dp[0][0]=1;
for(int j=0;j<=d;j++)
{
for(int k=0;k<=d;k++)
{
f[j-k+M][j+1]=f[j-k+M][j]+dp[j][k];
f[j-k+M][j+1]%=P;
s[j+k][j+1]=s[j+k][j]+dp[j][k];
s[j+k][j+1]%=P;
}
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=d;j++)
{
for(int k=0;k<=d;k++)
{
dp[j][k]=0;
l=max(p[i]-j,q[i]-k),r=min(p[i],q[i]);
if(l<=r)
dp[j][k]=mo(f[j-k-p[i]+q[i]+M][j-p[i]+r+1]-f[j-k-p[i]+q[i]+M][j-p[i]+l]);
dp[j][k]=mo(dp[j][k]);
l=max(q[i]-k,p[i]+1),r=min(q[i]-1,p[i]+j);
if(l<=r)
dp[j][k]+=mo(s[j+k+p[i]-q[i]][j-l+p[i]+1]-s[j+k+p[i]-q[i]][j-r+p[i]]);
dp[j][k]=mo(dp[j][k]);
l=max(q[i]+1,p[i]-j),r=min(p[i]-1,q[i]+k);
if(l<=r)
dp[j][k]+=mo(s[j+k+q[i]-p[i]][j-p[i]+r+1]-s[j+k+q[i]-p[i]][j-p[i]+l]);
dp[j][k]=mo(dp[j][k]);
l=max(p[i],q[i])+(p[i]==q[i]),r=min(p[i]+j,q[i]+k);
if(l<=r)
dp[j][k]+=mo(f[j-k+p[i]-q[i]+M][j-l+p[i]+1]-f[j-k+p[i]-q[i]+M][j-r+p[i]]);
dp[j][k]=mo(dp[j][k]);
if(i==n)
ans=(ans+dp[j][k])%P;
}
}
for(int j=0;j<=d;j++)
{
for(int k=0;k<=d;k++)
{
f[j-k+M][j+1]=f[j-k+M][j]+dp[j][k];
f[j-k+M][j+1]%=P;
s[j+k][j+1]=s[j+k][j]+dp[j][k];
s[j+k][j+1]%=P;
}
}
}
printf("%d",ans);
}
[ABC265F] Manhattan Cafe的更多相关文章
- robotium(及百度cafe)运行testcase之后程序挂起没有响应的原因调查及解决
一.问题背景 刚开始用的是百度cafe搭建的框架,已经用了一些版本,最后的test版本在7.4的apk上能跑,但是在最新发布的7.5的版本上跑不了,直接提示nullPointer错误,通过打日志的方式 ...
- R语言画全基因组关联分析中的曼哈顿图(manhattan plot)
1.在linux中安装好R 2.准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下: #!/usr/bin/Rscript #example : Rscript plot ...
- Manhattan distance(for lab)
Input four integer x1, y1, x2, y2, which is mean that the coordinates of two points A(x1, y1), B(x2, ...
- bzoj 3170 manhattan距离
首先将坐标系顺时针旋转45度,得到一个新的坐标系,这个坐标系 对应的坐标的manhattan距离就是原图中的距离,然后快排,利用前缀和 数组O(N)求所有的答案,然后找最小值就行了,总时间O(Nlog ...
- GWAS: 曼哈顿图,QQ plot 图,膨胀系数( manhattan、Genomic Inflation Factor)
画曼哈顿图和QQ plot 首推R包“qqman”,简约方便.下面具体介绍以下. 一.画曼哈顿图 install.packages("qqman") library(qqman) ...
- 基于Manhattan最小生成树的莫队算法
点u,v的Manhattan距离:distance(u,v)= |x2-x1|+|y2-y1| Manhattan最小生成树:边权值为两个点Manhattan距离的最小生成树. 普通算法:prim复杂 ...
- manhattan plots in qqplot2
###manhattan plots in qqplot2library(ggplot2)setwd("~/ncbi/zm/XPCLR/")read.table("LW. ...
- CAFE: a computational tool for the study of gene family evolution
1.摘要 摘要:我们提出了CAFE(计算分析基因家族进化),这是一个统计分析基因家族进化规模的工具.它使用随机的出生和死亡过程来模拟一个系统发育过程中基因家族大小的进化.对于一个特定的系统发育树,并给 ...
- 百度Cafe原理--Android自动化测试学习历程
主要讲解内容及笔记: 一.Cafe原理 Cafe是一款自动化测试框架,解决问题:跨进程测试.快速深度测试 官网:http://baiduqa.github.io/Cafe/ Cafe provides ...
- codechef FEB19 Manhattan Rectangle
Manhattan Rectangle 链接 题意: 交互题,询问小于7次,确定一个矩形的位置,每次询问一个点到矩形的曼哈顿距离. 分析: 询问三个顶点,然后解一下方程,求出一个边界,就好办了. 用s ...
随机推荐
- 使用kube-bench检测Kubernetes集群安全
目录 一.系统环境 二.前言 三.CIS (Center for Internet Security)简介 四.什么是Kube-Bench? 五.使用kube-bench检测不安全的设置 5.1 手动 ...
- Programming abstractions in C阅读笔记:p123-p126
<Programming Abstractions In C>学习第50天,p123-p126,总结如下: 一.技术总结 1.notaion 这也是一个在计算机相关书籍中出现的词,但有时却 ...
- 三维模型OBJ格式轻量化压缩变形现象分析
三维模型OBJ格式轻量化压缩变形现象分析 三维模型的OBJ格式轻量化压缩是一种常见的处理方法,它可以减小模型文件的体积,提高加载和渲染效率.然而,在进行轻量化压缩过程中,有时会出现模型变形的现象,即压 ...
- Python自定义终端命令
在python中自定义一个终端命令 这里我们想要将一个csv文件中的数据导入到数据库中,就可以定义一个终端命令,直接一行命令就可以将我们文件中的数据导入到数据库中,特别的简单 首先,我们先创建一个py ...
- MySQL 分表查询
分表是一种数据库分割技术,用于将大表拆分成多个小表,以提高数据库的性能和可管理性.在MySQL中,可以使用多种方法进行分表,例如基于范围.哈希或列表等.下面将详细介绍MySQL如何分表以及分表后如何进 ...
- Gradle 设置全局镜像源
复制 init.gradle.kts 文件到 Windows 的 %USERPROFILE%/.gradle 或者 Linux 的 ~/.gradle 目录下.也可以直接复制文末的代码为 init.g ...
- DHorse v1.4.0 发布,基于 k8s 的发布平台
版本说明 新增特性 提供Fabric8客户端操作k8s(预览)的功能,可以通过指定-Dkubernetes-client=fabric8参数开启: Vue.React应用增加Pnpm.Yarn的构建方 ...
- 用Rust手把手编写一个Proxy(代理), UDP绑定篇
用Rust手把手编写一个Proxy(代理), UDP绑定篇 项目 ++wmproxy++ gite: https://gitee.com/tickbh/wmproxy github: https:// ...
- ModbusTCP 转 Profinet 主站网关在博图配置案例
ModbusTCP 转 Profinet 主站网关在博图配置案例 兴达易控ModbusTCP转Profinet网关,在 Profinet 侧做为 Profinet 主站控制器,接 Profinet 设 ...
- Vue3搭建后台管理系统模板
搭建后台管理系统模板 2.1项目初始化 今天来带大家从0开始搭建一个vue3版本的后台管理系统.一个项目要有统一的规范,需要使用eslint+stylelint+prettier来对我们的代码质量做检 ...