摘要:本文是对ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别这一论文工作进行初步解读。

本文分享自华为云社区《ACL2021 NER | BERT化隐马尔可夫模型用于多源弱监督命名实体识别》,作者: JuTzungKuei 。

论文:Li Yinghao, Shetty Pranav, Liu Lucas, Zhang Chao, Song Le. BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised Named Entity Recognition[A]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) [C]. Online: Association for Computational Linguistics, 2021, 6178–6190.

链接:https://aclanthology.org/2021.acl-long.482.pdf

代码:https://github.com/Yinghao-Li/CHMM-ALT

0、摘要

  • 研究内容:使用多个弱监督数据的噪音标签学习NER
  • 噪音数据:不全、不准、矛盾
  • 提出一个条件隐马尔可夫模型(CHMM:conditional hidden Markov model)
    • 利用BERT的上下文表示能力,增强了经典的HMM模型
    • 从BERT嵌入中学习词的转移和发射概率,推断潜在的真标签
  • 用交替训练方法(CHMM-ALT)进一步完善CHMM
    • 用CHMM推导出的标签对BERT-NER模型进行微调
    • BERT-NER的输出作为额外的弱源来训练CHMM
  • 四份数据集上达到SOTA

1、介绍

  • NER是许多下游信息抽取任务的基础任务:事件抽取、关系抽取、问答
    • 有监督、需要大量标注数据
    • 许多领域有知识源:知识库、领域词典、标注规则
    • 可以用来匹配语料库,从多角度,快速生成大规模的噪声训练数据
  • 远程监督NER:只使用知识库作为弱监督,未使用多源标注的互补信息
  • 现有利用HMM方法,有局限性:one-hot词向量 或 不建模
  • 贡献:
    • CHMM:聚合多源弱标签
    • 交替训练方法CHMM-ALT:轮流训练CHMM和BERT-NER,利用彼此的输出进行多回路,以优化多源弱监督NER性能
    • 四份基准数据集获得SOTA

2、方法

  • CHMM-ALT 训练两个模型:多源标签聚合器CHMM和BERT-NER 模型,轮流作为彼此的输出
    • 阶段I:CHMM根据K个源x_{1:K}^{(1:T)}x1:K(1:T)​,生成一个去噪标签y^{*(1:T)}y∗(1:T),微调BERT-NER模型输出\widetilde{y}^{(1:T)}y​(1:T),作为额外的标注源,添加到原始弱标签集合x_{1:K+1}^{(1:T)} = \{x_{1:K}^{(1:T)} , \widetilde{y}^{(1:T)}\}x1:K+1(1:T)​={x1:K(1:T)​,y​(1:T)}
    • 阶段II:CHMM和BERT-NER在几轮循环中互相改进,每轮循环,先训练CHMM,后微调BERT-NER,更新前者的输入
    • CHMM 提高Precision,BERT-NER提高Recall

  • 隐马尔可夫模型
    • 不细解

3、结果

号外号外:想了解更多的AI技术干货,欢迎上华为云的AI专区,目前有AI编程Python等六大实战营供大家免费学习。

 

点击关注,第一时间了解华为云新鲜技术~

跟我读论文丨ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别的更多相关文章

  1. 【NLP学习其一】什么是命名实体识别NER?

    命名实体识别 概念 命名实体识别(Named Entity Recognition,简称NER) , 是指识别文本中具有特定意义的词(实体),主要包括人名.地名.机构名.专有名词等等,并把我们需要识别 ...

  2. 2. 知识图谱-命名实体识别(NER)详解

    1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识 ...

  3. 基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】

    声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity ...

  4. 【NER】对命名实体识别(槽位填充)的一些认识

    命名实体识别 1. 问题定义 广义的命名实体识别是指识别出待处理文本中三大类(实体类.时间类和数字类).七小类(人名.机构名.地名.日期.货币和百分比)命名实体.但实际应用中不只是识别上述所说的实体类 ...

  5. 神经网络结构在命名实体识别(NER)中的应用

    神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...

  6. 用深度学习做命名实体识别(六)-BERT介绍

    什么是BERT? BERT,全称是Bidirectional Encoder Representations from Transformers.可以理解为一种以Transformers为主要框架的双 ...

  7. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  8. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  9. NLP入门(四)命名实体识别(NER)

      本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领 ...

  10. 【神经网络】神经网络结构在命名实体识别(NER)中的应用

    命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图.它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的 ...

随机推荐

  1. html部分兼容性总结

    部分兼容性总结一下: 1.background-color的兼容性: 火狐正常,可以同时在后面加上!important(只有火狐识别,其他的不识别,火狐优先,位置必须放在开头). IE,谷歌,360, ...

  2. log4j漏洞CVE-2021-44228复现-排雷篇

    一.环境搭建(用相同的环境才能保证一定成功) 下载vulhub,其他环境可能存在GET请求无效问题: git clone https://github.com/vulhub/vulhub.git 切换 ...

  3. 2023 SHCTF-校外赛道 WEB WP

    WEEK1 babyRCE <?php $rce = $_GET['rce']; if (isset($rce)) { if (!preg_match("/cat|more|less| ...

  4. [C++]线段树 区间修改 区间查询

    线段树 区间修改 区间查询 请先阅读上一篇Bolg 算法思想 这次要引入一个核心变量: lazy 懒标记 为了达到区间修改的目的 又为了减少运算量 所以就需要引入懒标记这个变量 用来满足 即用即推 没 ...

  5. 殷浩详解DD系列

    第五讲:https://blog.csdn.net/Taobaojishu/article/details/115911833 内部有1-4讲链接

  6. HelloGitHub 社区动态,开启新的篇章!

    今天这篇文章是 HelloGitHub 社区动态的第一篇文章,所以我想多说两句,聊聊为啥开启这个系列. 我是 2016 年创建的 HelloGitHub,它从最初的一份分享开源项目的月刊,现如今已经成 ...

  7. 嵌入式C编码规范

    每个程序员都有自己的编码风格,自己喜欢就好. 嵌入式C编码规范 上述博文来自转载

  8. Ansible自动化部署工具-role模式安装filebeat实际案例分析

    大家好,我是蓝胖子,前面一节我简单的讲了讲Ansible的架构和编排任务的语法,可以发现,通过playbook方式编排任务时,能够将任务文档化,但是在面对比较复杂且不同业务的任务编排时,维护playb ...

  9. JavaScript高级程序设计笔记04 变量、作用域与内存

    变量.作用域与内存 变量 特定时间点一个特定值的名称. 分类 原始值:按值访问 复制:两个独立使用.互不干扰 引用值(由多个值构成的对象):按引用访问 操作对象时,实际上操作的是对该对象的引用(ref ...

  10. Unity学习笔记--数据持久化之PlayerPrefs的使用

    数据持久化 PlayerPrefs相关 PlayerPrefs是Unity游戏引擎中的一个类,用于在游戏中存储和访问玩家的偏好设置和数据.它可以用来保存玩家的游戏进度.设置选项.最高分数等信息.Pla ...