\({\color{Red}{欢迎到学科网下载资料学习 }}\)

[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]

( https://www.zxxk.com/docpack/2875423.html)

\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

求数列的前\(n\)项和\(S_n\)是数列中常考的一大专题,其方法有公式法、倒序相加(乘)法、分组求和法与裂项相消法等,在掌握这些方法的时候要注意方法的适用范围,其中的计算量有些大,技巧性也较强,需要多加以理解与总结.

基本方法

方法一 公式法

若已知数列是等差或等比数列,求其前\(n\)项和可直接使用对应的公式;若求和的式子对应某些公式,也可以直接使用.常见如下

(1) 等差数列求和公式 \(S_n=\dfrac{n\left(a_1+a_n\right)}{2}=n a_1+\dfrac{n(n-1)}{2} d\)

(2) 等比数列求和公式 \(S_n=\left\{\begin{array}{l}
n a_1, q=1 \\
\dfrac{a_1\left(1-q^n\right)}{1-q}, q \neq 1
\end{array}\right.\)

(3) \(1^2+2^2+3^2+\cdots+n^2=\dfrac{n(n+1)(2 n+1)}{6}\)

(4) \(1^3+2^3+3^3+\cdots+n^3=\left[\dfrac{n(n+1)}{2}\right]^2\).

【典题1】 求和式\(3+6+12+⋯+3\cdot 2^{n-2}\).

解析 和式\(3+6+12+⋯+3\cdot 2^{n-2}\)相当于数列\(3\)、\(6\)、\(12\)、\(…\)、\(3\cdot 2^{n-2}\)的和,

显然它是首项\(a_1=3\),公比\(q=2\)的等比数列,设前\(n\)项和为\(S_n\),

故\(a_n=a_1\cdot q^{n-1}=3\cdot 2^{n-1}\),

而和式最后一项是\(3\cdot 2^{n-2}=a_{n-1}\),是第\(n-1\)项,

故和式\(3+6+12+⋯+3\cdot 2^{n-2}\)只有\(n-1\)项而已,

则\(3+6+12+⋯+3\cdot 2^{n-2}\) (切勿想当然和式等于\(S_n\))

\(=S_{n-1}=\dfrac{a_1\left(1-q^{n-1}\right)}{1-q}=\dfrac{3\left(1-2^{n-1}\right)}{1-2}=3\left(2^{n-1}-1\right)\).

点拨 求和式时特别要注意确定项数,以第一个数为首项,判断最后一项为第几项(第\(n\)项、第\(n-1\)项?)便可.

巩固练习

1.求和式\(1+4+7+⋯+(3n+1)\).

2.已知\(\{a_n\}\)是等差数列,公差\(d≠0\),\(a_1=1\),且\(a_1\) ,\(a_3\) ,\(a_9\)成等比数列,求数列\(\left\{2^{a_n}\right\}\)的前\(n\)项和\(S_n\).

参考答案

  1. 答案 \(\dfrac{3 n^2+5 n+2}{2}\)

    解析 \(1+4+7+⋯+(3n+1)=\dfrac{3 n^2+5 n+2}{2}\).

  2. 答案 \(S_n=2^{n+1}-2\)

    解析 \(\because\)数列\(\{a_n\}\)是等差数列,公差\(d≠0\),\(a_1=1\),且\(a_1\) ,\(a_3\) ,\(a_9\)成等比数列,

    \(\therefore (1+2d)^2=1×(1+8d)\),解得\(d=1\)或\(d=0\)(舍),

    \(\therefore a_n=a_1+(n-1)d=n\),

    \(\therefore 2^{a_n}=2^n\),

    \(\therefore\)数列\(\left\{2^{a_n}\right\}\)是首项为\(2\),公比为\(2\)的等比数列,

    \(\therefore S_n=\dfrac{2\left(1-2^n\right)}{1-2}=2^{n+1}-2\).

方法二 倒序相加(乘)法

1 对于某个数列\(\{a_n\}\),若满足\(a_1+a_n=a_2+a_{n-1}=⋯=a_k+a_{n-k+1}\),则求前\(n\)项和\(S_n\)可使用倒序相加法.

具体解法 设\(S_n=a_1+a_2+⋯+a_{n-1}+a_n\) ①

把①反序可得\(S_n=a_n +a_{n-1}+⋯+a_2+a_1\) ②

由①+②得 \(2 S_n=\left(a_1+a_n\right)+\left(a_2+a_{n-1}\right)+\cdots+\left(a_{n-1}+a_2\right)+\left(a_n+a_1\right)\)\(\Rightarrow S_n=\dfrac{\left(a_1+a_n\right) n}{2}\).

2 对于某个数列\(\{a_n\}\),若满足\(a_1+a_n=a_2+a_{n-1}=⋯=a_k+a_{n-k+1}\),则求前\(n\)项积\(T_n\)可使用倒序相乘法.具体解法类同倒序相加法.

【典题1】 设 \(f(x)=\dfrac{1}{4^x+2}\),利用课本中推导等差数列前\(n\)项和的公式的方法,可求得\(f(-3)+f(-2)+⋯+f(0)+⋯+f(3)+f(4)\)的值为\(\underline{\quad \quad}\).

解析 设\(a+b=1\),

则 \(f(a)+f(b)=\dfrac{1}{4^a+2}+\dfrac{1}{4^b+2}=\dfrac{4^b}{\left(4^a+2\right) 4^b}+\dfrac{1}{4^b+2}=\dfrac{4^b}{4+2 \cdot 4^b}+\dfrac{1}{4^b+2}\)\(=\dfrac{4^b+2}{2\left(4^b+2\right)}=\dfrac{1}{2}\).

所以\(f(-3)+f(4)= \dfrac{1}{2}\),\(f(-2)+f(3)= \dfrac{1}{2}\),\(f(-1)+f(2)= \dfrac{1}{2}\),\(f(0)+f(1)= \dfrac{1}{2}\)

\(f(-3)+f(-2)+⋯+f(0)+⋯+f(3)+f(4)=4× \dfrac{1}{2}=2\).

点拨 课本中推导等差数列前\(n\)项和的公式的方法就是倒序相加法.

巩固练习

1.设等差数列\(\{a_n\}\),公差为\(d\),求证:\(\{a_n\}\)的前\(n\)项和 \(S_n=\dfrac{\left(a_1+a_n\right) n}{2}\).

2.设函数 \(f(x)=\dfrac{x^2}{1+x^2}\),求\(f(1)+f(2)+f\left(\dfrac{1}{2}\right)+f(3)+f\left(\dfrac{1}{3}\right)+f(4)+f\left(\dfrac{1}{4}\right)\)的值\(\underline{\quad \quad}\).

参考答案

  1. 证明 \(S_n=a_1+a_2+a_3+⋯+a_n\) ①

    倒序得:\(S_n=a_n+a_{n-1}+a_{n-2}+⋯+a_1\) ②

    ①+②得:\(2S_n=(a_1+a_n)+(a_2+a_{n-1})+(a_3+a_{n-2})+⋯+(a_n+a_1)\)

    又\(\because a_1+a_n=a_2+a_{n-1}=a_3+a_{n-2}=⋯=a_n+a_1\)

    \(\therefore 2 S_n=n\left(a_1+a_n\right) \Rightarrow S_n=\dfrac{n\left(a_1+a_n\right)}{2}\).

  2. 答案 \(\dfrac{7}{2}\)

    解析 \(\because\)函数 \(f(x)=\dfrac{x^2}{1+x^2}\),

    \(\therefore f(x)+f\left(\dfrac{1}{x}\right)=\dfrac{x^2}{1+x^2}+\dfrac{\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=\dfrac{x^2}{1+x^2}+\dfrac{1}{x^2+1}=1\),

    \(\therefore f(1)+f(2)+f\left(\dfrac{1}{2}\right)+f(3)+f\left(\dfrac{1}{3}\right)+f(4)+f\left(\dfrac{1}{4}\right)\)\(=f(1)+1+1+1=\dfrac{1}{1+1}+3=\dfrac{7}{2}\).

方法三 分组求和法

1 若数列\(\{c_n\}\)中通项公式\(c_n=a_n+b_n\),可分成两个数列\(\{a_n\}\),\(\{b_n\}\)之和,则数列\(\{c_n\}\)的前\(n\)项和等于两个数列\(\{a_n\}\),\(\{b_n\}\)的前\(n\)项和的和.

2 常见的是\(c_n=\)等差+等比的形式,

3 等比数列的通项公式形如\(a_n=kn+b\),等差数列的通项公式形如\(a_n=A\cdot B^n\).

【典题1】 求数列\(\{3^n+2n-1\}\)的前\(n\)项和\(S_n\).

解析 设\(a_n=3^n+2n-1\), (其中可知数列\(\{3^n\}\)是等比数列,数列\(\{2n-1\}\)是等差数列)

则\(S_n=a_1+a_2+a_3+⋯+a_n\)\(=(3^1+1)+(3^2+3)+(3^3+5)+⋯(3^n+2n-1)\)

(把等比项和等差项分别放在一组)

\(=(3^1+3^2+3^3+⋯+3^n )+(1+3+5+⋯+2n-1)\) (确定好首项和公差、公比)

\(=\dfrac{3\left(1-3^n\right)}{1-3}+\dfrac{(1+2 n-1) n}{2}\)

\(=\dfrac{3^{n+1}}{2}+n^2-\dfrac{3}{2}\).

【典题2】 已知在等差数列\(\{a_n\}\)中,\(a_1=2\),\(a_3+a_5=10\).

(1)设 \(b_n=2^{a_n}\),求证:数列\(\{b_n\}\)是等比数列;(2)求数列\(\{a_n+b_n\}\)的前\(n\)项和.

解析 (1)设公差为\(d\)的等差数列\(\{a_n\}\)中,\(a_1=2\),\(a_3+a_5=10\).

整理得 \(\left\{\begin{array}{c}
a_1=2 \\
2 a_1+6 d=10
\end{array}\right.\),解得 \(\left\{\begin{array}{l}
a_1=2 \\
d=1
\end{array}\right.\),

所以\(a_n=a_1+(n-1)=n+1\).

由于 \(b_n=2^{a_n}\),所以\(b_n=2^{n+1}\),\(b_{n-1}=2^n\),

整理得 \(\dfrac{b_n}{b_{n-1}}=2\)(常数),

所以数列\(\{b_n\}\)是以\(b_1=2^2=4\)为首项,\(2\)为公比的等比数列.

(2)由于数列\(\{b_n\}\)是以\(b_1=2^2=4\)为首项,\(2\)为公比的等比数列,

所以\(b_n=4×2^{n-1}=2^{n+1}\).

所以\(a_n+b_n=2^{n+1}+n+1\),

故\(S_n=\dfrac{4\left(2^n-1\right)}{2-1}+\dfrac{n(2+n+1)}{2}=2^{n+2}+\dfrac{n(n+3)}{2}-4\).

巩固练习

1.已知数列\(\{a_n\}\)的通项\(a_n=2^n+n\),若数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),则\(S_8=\) \(\underline{\quad \quad}\).

2.已知数列\(\{a_n\}\)是等比数列,公比为\(q\),数列\(\{b_n\}\)是等差数列,公差为\(d\),且满足:\(a_1=b_1=1\),\(b_2+b_3=4a_2\),\(a_3-3b_2=-5\).

  (1)求数列\(\{a_n\}\)和\(\{b_n\}\)的通项公式;

  (2)设\(c_n=a_n+b_n\),求数列\(\{c_n\}\)的前\(n\)项和\(S_n\).

参考答案

  1. 答案 \(546\)

    解析 数列\(\{a_n\}\)的通项\(a_n=2^n+n\),

    若数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),

    则 \(S_n=\left(2^1+2^2+\cdots+2^n\right)+(1+2+\cdots+n)=\dfrac{2\left(2^n-1\right)}{2-1}+\dfrac{n(n+1)}{2}\)\(=2\left(2^n-1\right)+\dfrac{n(n+1)}{2}\).

    则\(S_8=2\left(2^8-1\right)+\dfrac{8 \times 9}{2}=546\) .

  2. 答案 (1) \(a_n=2^{n-1}\),\(b_n=2n-1\) ;(2) \(2^n+n^2-1\)

    解析 (1)设等比数列\(\{a_n\}\)的公比为\(q\),等差数列\(\{b_n\}\)的公差为\(d\),

    由题意知\(q>0\),

    由已知,有 \(\left\{\begin{array}{l}
    (1+d)+(1+2 d)=4 q \\
    q^2-3(1+d)=-5
    \end{array}\right.\),

    即 \(\left\{\begin{array}{l}
    -4 q+3 d=-2 \\
    q^2-3 d=-2
    \end{array}\right.\),解得\(q=d=2\).

    \(\therefore \{a_n\}\)的通项公式为\(a_n=2^{n-1}\),\(\{b_n\}\)的通项公式为\(b_n=2n-1\);

    (2)由(1)知,\(c_n=a_n+b_n=2^{n-1}+2n-1\),

    则\(S_n=(1+2^1+2^2+⋯+2^{n-1})+[1+3+5+⋯+(2n-1)]\)

    \(=\dfrac{1 \times\left(1-2^n\right)}{1-2}+\dfrac{n(1+2 n-1)}{2}=2^n+n^2-1\).

方法四 错位相减法

当数列\(\{a_n\}\) 的通项公式\(a_n=b_n⋅ c_n\) ,其中\(\{b_n\}\)为等差数列,\(\{c_n\}\)为等比数列.

举例:

【典题1】 已知递增的等比数列\(\{a_n\}\)满足\(a_2+a_3+a_4=28\),且\(a_3+2\)是\(a_2\) ,\(a_4\)的等差中项.

(1)求数列\(\{a_n\}\)的通项公式\(a_n\);

(2)令\(b_n=a_n⋅\log _{\dfrac{1}{2}} a_n\),\(S_n=b_1+b_2+⋯+b_n\),求\(S_n\).

解析 (1)设数列\(\{a_n\}\)的公比为\(q\),

由题意可知\(\left\{\begin{array}{l}
a_2+a_3+a_4=28 \\
2\left(a_3+2\right)=a_2+a_4
\end{array}\right.\),

即\(\left\{\begin{array} { l }
{ a _ { 3 } = 8 } \\
{ a _ { 2 } + a _ { 4 } = 2 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a_1 q^2=8 \\
a_1 q+a_1 q^3=20
\end{array}\right.\right.\),

解得 \(\left\{\begin{array}{l}
a_1=2 \\
q=2
\end{array}\right.\)或 \(\left\{\begin{array}{l}
a_1=32 \\
q=\dfrac{1}{2}
\end{array}\right.\)(舍)

\(\therefore a_n=2⋅2^{n-1}=2^n\).

(2)\(b_n=a_n\cdot \log _{\dfrac{1}{2}} a_n=2^n\cdot \log _{\dfrac{1}{2}} 2^n=-n⋅2^n\),

(其中\(\{n\}\)是等差数列,\(\{2^n\}\)是等比数列,可用错位相减法)

\(\therefore S_n=-1×2-2×2^2-3×2^3-⋯-{n-1}×2^{n-1}-n×2^n\) (1)

\(2S_n=\) \(-1×2^2-2×2^3-3×2^4-⋯-{n-1}×2^n-n×2^{n+1}\) (2)

\(\therefore (1)-(2)\)得

\(-S_n=-\left(2+2^2+2^3+\cdots 2^n\right)+n \times 2^{n+1}\)\(=-\dfrac{2-2^{n+1}}{1-2}+n \times 2^{n+1}=(n-1) \times 2^{n+1}+2\)

\(\therefore S_n=(1-n)×2^{n+1}-2\). (最后可用\(S_2\)检验运算结果是否正确)

巩固练习

1.设等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),且\(S_4=4S_2\),\(a_{2n}=2a_n+1\).

  (1)求数列\(\{a_n\}\)的通项公式;

  (2)设数列\(\{b_n\}\)满足 \(b_n=\dfrac{2\left(a_n-1\right)}{4^n}\),求数列\(\{b_n\}\)的前\(n\)项和\(R_n\).

2.已知正项数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),满足\(a_n^2+a_n-2S_n=0(n∈N^*)\).

  (1)求数列\(\{a_n\}\)的通项公式;

  (2)记数列\(\{b_n\}\)的前\(n\)项和为\(T_n\),若\(b_n=(2a_n-7) 2^n\),求\(T_n\);

  (3)求数列\(\{T_n\}\)的最小项.

参考答案

  1. 答案 (1)\(a_n=2n-1\); (2) \(R_n=\dfrac{1}{9}\left(4-\dfrac{3 n+1}{4^{n-1}}\right)\).

    解析 (1)设等差数列\(\{a_n\}\)的首项为\(a_1\),公差为\(d\),

    由\(S_4=4S_2\),\(a_{2n}=2a_n+1\)得\(\left\{\begin{array}{l}
    4 a_1+6 d=8 a_1+4 d \\
    a_1+(2 n-1) d=2 a_1+2(n-1) d+1
    \end{array}\right.\),

    解得\(a_1=1\),\(d=2\).

    因此\(a_n=2n-1(n∈N^*)\).

    (2)由题意知: \(b_n=\dfrac{2 a_n-2}{4^n}=(n-1)\left(\dfrac{1}{4}\right)^{n-1}\),

    所以 \(R_n=0 \times\left(\dfrac{1}{4}\right)^0+1 \times\left(\dfrac{1}{4}\right)^1+2 \times\left(\dfrac{1}{4}\right)^2+3 \times\left(\dfrac{1}{4}\right)^3+\cdots+(n-1) \times\left(\dfrac{1}{4}\right)^{n-1}\),

    \(\dfrac{1}{4} R_n=0 \times\left(\dfrac{1}{4}\right)^1+1 \times\left(\dfrac{1}{4}\right)^2+2 \times\left(\dfrac{1}{4}\right)^3+\cdots+(n-2) \times\left(\dfrac{1}{4}\right)^{n-1}+(n-1) \times\left(\dfrac{1}{4}\right)^n\)

    两式相减得 \(\dfrac{3}{4} R_n=\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2+\cdots+\left(\dfrac{1}{4}\right)^{n-1}-(n-1)\left(\dfrac{1}{4}\right)^n=\dfrac{\dfrac{1}{4}-\left(\dfrac{1}{4}\right)^n}{1-\dfrac{1}{4}}-(n-1)\left(\dfrac{1}{4}\right)^n\)

    整理得\(R_n=\dfrac{1}{9}\left(4-\dfrac{3 n+1}{4^{n-1}}\right)\),

    所以数列\(\{c_n\}\)的前\(n\)项和\(R_n=\dfrac{1}{9}\left(4-\dfrac{3 n+1}{4^{n-1}}\right)\).

  2. 答案 (1)\(a_n=n\);(2)\(T_n=(2n-9)⋅2^{n+1}+18\);(3) \(-30\).

    解析 (1)由\(a_n^2+a_n-2S_n=0\),得到:\(a_{n+1}^2+a_{n+1}-2S_{n+1}=0\),

    两式相减得:\((a_{n+1}^2-a_n^2)+(a_{n+1}-a_n)-2(S_{n+1}-S_n)=0\),

    整理得:\((a_{n+1}+a_n)(a_{n+1}-a_n-1)=0\),

    由于数列\(\{a_n\}\)是正项数列,

    所以\(a_{n+1}-a_n=1\)(常数),

    当\(n=1\)时,解得\(a_1=1\).

    故\(a_n=1+n-1=n\).

    (2)由(1)得:\(b_n=(2n-7)⋅2^n\),

    所以:\(T_n=(-5)⋅2^1+(-3)⋅2^2+(-1)⋅2^3+⋯+(2n-7)⋅2^n\)①,

    \(2T_n=(-5)⋅2^2+(-3)⋅2^3+(-1)⋅2^3+⋯+(2n-7)⋅2^{n+1}\)②,

    ①-②得:\(-T_n=(-5)×2+2^3+2^4+⋯+2^{n+1}-(2n-7)⋅2^{n+1}\),

    解得:\(T_n=(2n-9)⋅2^{n+1}+18\).

    (3)\(T_{n+1}-T_n=(2n-7)⋅2^{n+2}+18-(2n-9)⋅2^{n+1}-18=(2n-5)⋅2^{n+1}\),

    当\(n≤2\)时,\(T_{n+1}<T_n\),

    当\(n≥3\)时,\(T_{n+1}>T_n\),

    故:\(T_1>T_2>T_3<T_4<T_5<⋯\),

    故数列\(\{T_n\}\)的最小值为\(T_3=-30\).

方法五 裂项相消法

常见裂项公式

(1) \(\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\),\(\dfrac{1}{n(n+k)}=\dfrac{1}{k}\left(\dfrac{1}{n}-\dfrac{1}{n+k}\right)\);

(2) \(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\),\(\dfrac{1}{\sqrt{n+k}+\sqrt{n}}=\dfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\).

【典题1】 设等差数列\(\{a_n\}\)满足\(a_2=5\),\(a_6+a_8=30\),则数列\(\left\{\dfrac{4}{a_n^2-1}\right\}\)的前\(n\)项的和等于\(\underline{\quad \quad}\).

解析 \(\because a_6+a_8=30\), \(\therefore a_7=15\),

又\(\because a_2=5\), \(\therefore d=\dfrac{15-5}{7-2}=2\),

\(\therefore a_n=a_2+{n-2}d=2n+1\),

\(\therefore a_n^2=(2n+1)^2=4n^2+4n+1\),

\(\therefore \dfrac{4}{a_n^2-1}=\dfrac{4}{4 n^2+4 n}=\dfrac{1}{n^2+n}=\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (因式分解裂项是关键)

\(\therefore\) 数列 \(\left\{\dfrac{4}{a_n^2-1}\right\}\)的前\(n\)项的和为 \(\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)=1-\dfrac{1}{n+1}\).

点拨 本题是用了常见的裂项公式 \(\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\), \(\dfrac{1}{n(n+k)}=\dfrac{1}{k}\left(\dfrac{1}{n}-\dfrac{1}{n+k}\right)\),

思考下以下各项怎么裂项: \(a_n=\dfrac{1}{n^2-n}(n \geq 2)\), \(a_n=\dfrac{1}{2 n^2+4 n}\), \(a_n=\dfrac{1}{n^2+3 n}\).

【典题2】 已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),且满足\(a_1=2\),\(S_n=a_{n+1}-2^{n+2}+2\) ,\(n∈N^*\).

  (1)求数列\(\{a_n\}\)的通项公式;

  (2)设 \(b_n=\dfrac{2^n}{a_n}\),记数列\(\{b_n b_{n+1}\}\)的前\(n\)项和为\(T_n\),证明:\(\dfrac{1}{2}≤T_n<1\).

解析 (1)解:由题意,当\(n=1\)时,\(a_1=S_1=a_2-2^3+2\),

即\(a_2-6=2\),解得\(a_2=8\),

当\(n≥2\)时,由\(S_n=a_{n+1}-2^{n+2}+2\),可得:\(S_{n-1}=a_n-2^{n+1}+2\),

两式相减,可得:\(a_n=a_{n+1}-a_n-2^{n+2}-2^{n+1}\),

整理,得\(a_{n+1}-2a_n=2^{n+1}\),

两边同时乘以\(\dfrac{1}{2^{n+1} }\),可得\(\dfrac{a_{n+1}}{2^{n+1}}-\dfrac{a_n}{2^n}=1\),\((n≥2)\)

\(\because \dfrac{a_ 1}{2^1 }=1\), \(\therefore\)数列\(\left\{\dfrac{a_n}{2^n}\right\}\)是以\(1\)为首项,\(1\)为公差的等差数列,

\(\therefore \dfrac{a_n}{2^n}=1+1 \times(n-1)=n\),\(\therefore a_n=n2^n\),\(n∈N^*\).

(2)证明:由(1)知,\(b_n=\dfrac{2^n}{a_n}=\dfrac{2^n}{n \cdot 2^n}=\dfrac{1}{n}\) ,

则\(b_n b_{n+1}=\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\),

\(\therefore T_n=b_1 b_2+b_2 b_3+\cdots+b_n b_{n+1}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots+\dfrac{1}{n}-\dfrac{1}{n+1}=1-\dfrac{1}{n+1}\),

\(\because n∈N^*\), \(\therefore 0<\dfrac{1}{n+1} \leq \dfrac{1}{2}\),

\(\therefore \dfrac{1}{2} \leq 1-\dfrac{1}{n+1}<1\),即\(\dfrac{1}{2}≤T_n<1\).

巩固练习

1.已知数列\(\{a_n\}\)满足\(a_1=1\), \(a_{n+1}=\dfrac{a_n}{a_n+1}\).

  (1)证明:数列\(\left\{\dfrac{1}{a_n}\right\}\)是等差数列,并求数列\(\{a_n\}\)的通项公式;

  (2)设 \(b_n=\dfrac{a_n}{n+2}\),求数列\(\{b_n\}\)前\(n\)项和\(S_n\).

2.已知正项数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),\(4S_n=a_n^2+4n-1\),\(a_1=1\).

  (1)求数列\(\{a_n\}\)的通项公式;

  (2)设\(\{a_n\}\)是递增数列,\(b_n=\dfrac{1}{a_n \cdot a_{n+1}}\),\(T_n\)为数列\(\{b_n\}\)的前\(n\)项和,若\(T_n \leq \dfrac{m}{6}\)恒成立,求实数\(m\)的取值范围.

参考答案

  1. 答案 (1)\(a_n=\dfrac{1}{n}\); (2) \(S_n=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\)

    解析 (1)证明:由 \(a_{n+1}=\dfrac{a_n}{a_n+1}\),得 \(\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n}=\dfrac{a_n+1}{a_n}-\dfrac{1}{a_n}=1\),

    再由\(a_1=1\),得 \(\dfrac{1}{a_1}=1\),

    \(\therefore\)数列\(\left\{\dfrac{1}{a_n}\right\}\)是首项为\(1\),公差为\(1\)的等差数列,

    \(\therefore \dfrac{1}{a_n}=1+(n-1) \times 1=n\),则\(a_n=\dfrac{1}{n}\);

    (2)解:由 \(b_n=\dfrac{a_n}{n+2}\),得 \(b_n=\dfrac{1}{n(n+2)}=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\),

    \(\therefore\) 数列\(\{b_n\}\)前\(n\)项和 \(S_n=\dfrac{1}{2}\left[\left(1-\dfrac{1}{3}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\cdots+\left(\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)+\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\right]\)

    \(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\).

  2. 答案 (1) \(a_n=2n-1\)或\(a_n=1\); (2) \([3,+∞)\).

    解析 (1)\(n≥2\)时,\(4a_n=4S_n-4S_{n-1}=a_n^2+4n-1-[a_{n-1}^2+4{n-1}-1]\),

    化为:\((a_n-2)^2=a_{n-1}^2\),\(a_n>0\).

    \(\therefore a_n-a_{n-1}=2\),或\(a_n+a_{n-1}=2\),

    \(a_n-a_{n-1}=2\)时,数列\(\{a_n\}\)是等差数列,\(a_n=1+2(n-1)=2n-1\).

    \(a_n+a_{n-1}=2\)时,\(\because a_1=1\),可得\(a_n=1\).

    (2) \(\{a_n\}\)是递增数列,\(\therefore a_n=2n-1\).

    \(b_n=\dfrac{1}{a_n \cdot a_{n+1}}=\dfrac{1}{(2 n-1)(2 n+1)}=\dfrac{1}{2}\left(\dfrac{1}{2 n-1}-\dfrac{1}{2 n+1}\right)\),

    数列\(\{b_n\}\)的前\(n\)项和 \(T_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\cdots \cdots+\dfrac{1}{2 n-1}-\dfrac{1}{2 n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2 n+1}\right)<\dfrac{1}{2}\),

    \(\because T_n \leq \dfrac{m}{6}\)恒成立, \(\therefore \dfrac{1}{2} \leq \dfrac{m}{6}\),解得\(m≥3\).

    \(\therefore\)实数\(m\)的取值范围是\([3,+∞)\).

分层练习

【A组---基础题】

1.数列\(1 \dfrac{1}{2}\),\(2 \dfrac{1}{4}\), \(3 \dfrac{1}{8}\),…,\(n+ \dfrac{1}{2^n}\) 的前\(n\)项和为\(S_n=\)(  )

 A. \(\dfrac{n^2-1}{n}\) \(\qquad \qquad\) B. \(\dfrac{n(n+1)}{2}+2^n\) \(\qquad \qquad\) C. \(\dfrac{n(n+1)}{2}-\dfrac{1}{2^n}+1\)\(\qquad \qquad\) D. \(\dfrac{n}{2^n}-1\)

2.设 \(f(x)=\dfrac{1}{9^x+3}\),利用课本中推导等差数列前\(n\)项和的公式的方法,可求得\(f(-3)+f(-2)+⋯+f(0)+⋯+f(3)+f(4)\)的值为\(\underline{\quad \quad}\).

3.数列\(\{a_n\}\)满足 \(a_n=\dfrac{1}{(2 n+1)(2 n+3)}\) ,\(n∈N^*\),其前\(n\)项和为\(S_n\).若\(S_n<M\)恒成立,则\(M\)的最小值为\(\underline{\quad \quad}\).

4.已知等差数列\(\{a_n\}\)中,公差\(d>0\),\(a_1\),\(a_5\)为方程\(x^2-10x+9=0\)的两根.

  (1)求数列\(\{a_n\}\)的通项公式;

  (2)设\(b_n=a_n+ \dfrac{1}{2^n}\),求数列\(\{b_n\}\)的前\(n\)项和\(T_n\).

5.已知正项数列\(\left\{a_n\right\}\)满足 \(a_1=\sqrt{2}\), \(a_{n+1}^2-a_n^2=2(n+1)\).

  (1)求数列\(\left\{a_n\right\}\)的通项公式;

  (2)若数列\(\left\{b_n\right\}\)满足\(b_1=3\), \(b_n=3 b_{n-1}+3^n(n \geq 2)\),求数列 \(\left\{\dfrac{a_n^2}{b_n}\right\}\)的前\(n\)项和\(S_n\).

6.已知公差不为0的等差数列\(\{a_n\}\)的前\(9\)项和\(S_9=45\),且第\(2\)项、第\(4\)项、第\(8\)项成等比数列.

  (1)求数列\(\{a_n\}\)的通项公式;

  (2)若数列\(\{b_n\}\)满足 \(b_n=a_n+\left(\dfrac{1}{2}\right)^{n-1}\),求数列\(\{b_n\}\)的前\(n\)项和\(T_n\).

7.已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),且\(S_2=8\),\(S_9=11a_4\).

  (1)求\(a_n\);

  (2)设数列\(\left\{\dfrac{1}{S_n}\right\}\)的前\(n\)项和为\(T_n\),求证:\(T_n<\dfrac{3}{4}\).

8.已知数列列\(\{a_n\}\)的前\(n\)项和为\(S_n\),且满足\(2S_n=3a_n-3\).

  (1)证明数列\(\{a_n\}\)是等比数列;

  (2)若数列\(\{b_n\}\)满足 \(b_n=\log _3 a_n\),记数列 \(\left\{\dfrac{b_n}{a_n}\right\}\)的前\(n\)项和为\(T_n\),证明: \(\dfrac{1}{3}<T_n<\dfrac{3}{4}\).

9.设函数\(f(x)=\dfrac{2^x}{2^x+\sqrt{2}}\)的图象上两点\(P_1 (x_1 ,y_1)\)、\(P_2 (x_2 ,y_2)\),若\(\overrightarrow{O P}=\dfrac{1}{2}\left(\overrightarrow{O P_1}+\overrightarrow{O P_2}\right)\),且点\(P\)的横坐标为\(\dfrac{1}{2}\).

  (1)求证:\(P\)点的纵坐标为定值,并求出这个定值;

  (2)求\(S_n=f\left(\dfrac{1}{n}\right)+f\left(\dfrac{2}{n}\right)+\cdots+f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{n}{n}\right)\).

参考答案

  1. 答案 \(C\)

    解析 数列\(1 \dfrac{1}{2}\),\(2 \dfrac{1}{4}\), \(3 \dfrac{1}{8}\),…,\(n+ \dfrac{1}{2^n}\) 的前\(n\)项和为

    \(S_n=(1+2+3+\cdots+n)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots+\dfrac{1}{2^n}\right)\)\(=\dfrac{n(n+1)}{2}+\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^n}\right)}{1-\dfrac{1}{2}}=\dfrac{n(n+1)}{2}-\dfrac{1}{2^n}+1\).

    故选:\(C\).

  2. 答案 \(\dfrac{4}{3}\)

    解析 设\(a+b=1\),

    则 \(f(a)+f(b)=\dfrac{1}{9^a+3}+\dfrac{1}{9^b+3}=\dfrac{1}{9^{1-b}+3}+\dfrac{1}{9^b+3}\)\(=\dfrac{9^b}{3\left(9^b+3\right)}+\dfrac{1}{9^b+3}=\dfrac{9^b+3}{3\left(9^b+3\right)}=\dfrac{1}{3}\) ,

    所以\(f(-3)+f(4)= \dfrac{1}{3}\),\(f(-2)+f(3)= \dfrac{1}{3}\),\(f(-1)+f(2)= \dfrac{1}{3}\),\(f(0)+f(1)= \dfrac{1}{2}\),

    \(f(-3)+f(-2)+⋯+f(0)+⋯+f(3)+f(4)=4× \dfrac{1}{3}=\dfrac{4}{3}\).

  3. 答案 \(\dfrac{1}{6}\)

    解析 \(a_n=\dfrac{1}{(2 n+1)(2 n+3)}=\dfrac{1}{2}\left(\dfrac{1}{2 n+1}-\dfrac{1}{2 n+3}\right)\),

    可得其前\(n\)项和 \(S_n=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\cdots+\dfrac{1}{2 n+1}-\dfrac{1}{2 n+3}\right)=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{2 n+3}\right)\),

    由\(\dfrac{1}{2 n+3}>0\),可得 \(S_n<\dfrac{1}{6}\),

    \(S_n<M\)恒成立,可得 \(M \geq \dfrac{1}{6}\),即\(M\)的最小值为 \(\dfrac{1}{6}\).

  4. 答案 (1)\(a_n=2n-1\);(2)\(T_n=n^2+1- \dfrac{1}{2^n}\) .

    解析 等差数列\(\{a_n\}\)中,公差\(d>0\),\(a_1\),\(a_5\)为方程\(x^2-10x+9=0\)的两根.

    所以\(a_1+a_5=10\),\(a_1 a_5=9\),解得\(a_1=1\),\(a_5=9\).

    所以\(d=\dfrac{9-1}{5-1}=2\).

    故\(a_n=a_1+2(n-1)=2n-1\).

    (2)由于\(a_n=2n-1\),

    所以\(b_n=2 n-1+\dfrac{1}{2^n}\),

    所以\(T_n=(1+3+\cdots+2 n-1)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\cdots+\dfrac{1}{2^n}\right)\)\(=\dfrac{n(1+2 n-1)}{2}+\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^n}\right)}{1-\dfrac{1}{2}}=n^2+1-\dfrac{1}{2^n}\).

  5. 答案 (1) \(a_n=\sqrt{n^2+n}\);(2) \(S_n=\dfrac{5}{4}-\dfrac{2 n+5}{4} \cdot\left(\dfrac{1}{3}\right)^n\).

    解析 (1)由 \(a_1=\sqrt{2}\), \(a_{n+1}^2-a_n^2=2(n+1)\),

    可得 \(a_n^2=a_1^2+\left(a_2^2-a_1^2\right)+\left(a_3^2-a_2^2\right)+\ldots+\left(a_n^2-a_{n-1}^2\right)\)

    \(=2+4+6+\ldots+2 n=\dfrac{1}{2} n(2+2 n)=n^2+n\),

    又 \(乙 a_n=0\),所以 \(a_n=\sqrt{n^2+n}\);

    (2)\(b_1=3\), \(b_n=3 b_{n-1}+3^n(n \geq 2)\),

    可得 \(\dfrac{b_n}{3^n}=\dfrac{b_{n-1}}{3^{n-1}}+1(n \geq 2)\),

    则\(\left\{\dfrac{b_n}{3^n}\right\}\)是以 \(\dfrac{b_1}{3}=1\)为首项,公差为\(1\)的等差数列,

    则\(\dfrac{b_n}{3^n}=n\),即为\(b_n=n\cdot 3^n\),

    令\(c_n=\dfrac{a_n^2}{b_n}\),则 \(c_n=\dfrac{n+1}{3^n}\) ,

    所以\(S_n=\dfrac{2}{3^1}+\dfrac{3}{3^2}+\cdots+\dfrac{n+1}{3^n}\) ,

    \(\dfrac{1}{3} S_n=\dfrac{2}{3^2}+\dfrac{3}{3^3}+\cdots+\dfrac{n+1}{3^{n+1}}\),

    两式相减可得\(\dfrac{2}{3} S_n=\dfrac{2}{3}+\dfrac{1}{3^2}+\cdots+\dfrac{1}{3^n}-\dfrac{n+1}{3^{n+1}}=\dfrac{1}{3}+\dfrac{\dfrac{1}{3}\left(1-\dfrac{1}{3^n}\right)}{1-\dfrac{1}{3}}-\dfrac{n+1}{3^{n+1}}\),

    化为\(S_n=\dfrac{5}{4}-\dfrac{2 n+5}{4} \cdot\left(\dfrac{1}{3}\right)^n\).

  6. 答案 (1)\(a_n=n\) (2) \(T_n=\dfrac{n^2+n+4}{2}-\dfrac{1}{2^{n-1}}\)

    解析 (1)设公差为\(d\),且\(d≠0\)的等差数列\(\{a_n\}\)的前\(9\)项和\(S_9=45\),

    且第\(2\)项、第\(4\)项、第\(8\)项成等比数列.

    所以\(\left\{\begin{array}{c}
    S_9=45 \\
    a_4^2=a_2 a_8
    \end{array}\right.\),

    整理得\(\left\{\begin{array}{c}
    9 a_1+36 d=45 \\
    \left(a_1+3 d\right)^2=\left(a_1+d\right)\left(a_1+7 d\right)
    \end{array}\right.\),解得\(a_1=d=1\),

    故\(a_n=n\).

    (2)由(1)得:数列\(\{b_n\}\)满足\(b_n=a_n+\left(\dfrac{1}{2}\right)^{n-1}=n+\left(\dfrac{1}{2}\right)^{n-1}\),

    所以\(T_n=(1+2+\ldots+n)+\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\ldots+\dfrac{1}{2^{n-1}}\right)=\dfrac{n^2+n+4}{2}-\dfrac{1}{2^{n-1}}\).

  7. 答案 (1)\(a_n=2n+1\);(2) 略 .

    解析 (1)设公差为\(d\),由\(S_2=8\),\(S_9=11a_4\),

    得\(\left\{\begin{array}{l}
    2 a_1+d=8 \\
    9 a_1+36 d=11 a_1+33 a
    \end{array}\right.\),解得\(a_1=3\),\(d=2\).

    \(\therefore a_n=3+2(n-1)=2n+1\);

    证明:(2)由(1),\(a_n=2n+1\),则有\(S_n=\dfrac{n}{2}(3+2 n+1)=n^2+2 n\).

    则\(\dfrac{1}{S_n}=\dfrac{1}{n(n+2)}=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\).

    \(\therefore T_n=\dfrac{1}{2}\left[\left(1-\dfrac{1}{3}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\ldots+\left(\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)+\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\right]\)

    \(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)<\dfrac{3}{4}\).

  8. 答案 (1) 略;(2) 略 .

    解析 (1)因为\(2S_n=3a_n-3\),所以 \(2 S_{n-1}=3 a_{n-1}-3\),

    两式相减得,\(2a_n=3a_n-3a_{n-1} (n≥2)\),即\(a_n=3a_{n-1} (n≥2)\),

    在\(2S_n=3a_n-3\)中,令\(n=1\),则\(2a_1=2S_1=3a_1-3\),解得\(a_1=3≠0\),

    故数列\(\{a_n\}\)是以\(3\)为首项,\(3\)为公比的等比数列.

    (2)由(1)可知\(a_n=3^n\).

    所以 \(b_n=\log _3 a_n=\log _3 3^n=n\),所以 \(\dfrac{b_n}{a_n}=\dfrac{n}{3^n}\).

    所以 \(T_n=\dfrac{1}{3^1}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+\cdots \cdots+\dfrac{n-1}{3^{n-1}}+\dfrac{n}{3^n}\),

    \(\dfrac{1}{3} T_n=\dfrac{1}{3^2}+\dfrac{2}{3^3}+\dfrac{3}{3^4}+\cdots \cdots+\dfrac{n-1}{3^n}+\dfrac{n}{3^{n+1}}\) ,

    两式相减得, \(\dfrac{2}{3} T_n=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\cdots \cdots+\dfrac{1}{3^n}-\dfrac{n}{3^{n+1}}\)\(=\dfrac{\dfrac{1}{3}\left[1-\left(\dfrac{1}{3}\right)^n\right]}{1-\dfrac{1}{3}}-\dfrac{n}{3^{n+1}}=\dfrac{3^{n+1}-2 n-3}{2 \cdot 3^{n+1}}\),

    所以 \(T_n=\dfrac{3^{n+1}-2 n-3}{4 \cdot 3^n}=\dfrac{3}{4}-\dfrac{2 n+3}{4} \cdot \dfrac{1}{3^n}<\dfrac{3}{4}\),

    当\(n≥2\)时, \(T_n-T_{n-1}=\dfrac{b_n}{a_n}=\dfrac{n}{3^n}>0\),

    故数列\(\left\{T_n\right\}\)为递增数列, \(T_n>T_1=\dfrac{1}{3}\).

    综上所述,\(\dfrac{1}{3}<T_n<\dfrac{3}{4}\).

  9. 答案 (1) \(\dfrac{1}{2}\);(2) \(S_n=\dfrac{n+3-2 \sqrt{2}}{2}\) .

    解析 (1)证: \(\because \overrightarrow{O P}=\dfrac{1}{2}\left(\overrightarrow{O P_1}+\overrightarrow{O P_2}\right)\),

    \(\therefore P\)是\(P_1 P_2\)的中点\(⇒x_1+x_2=1\)

    \(\therefore y_1+y_2=f\left(x_1\right)+f\left(x_2\right)=\dfrac{2^{x_1}}{2^{x_1}+\sqrt{2}}+\dfrac{2^{x_2}}{2^{x_2}+\sqrt{2}}=\dfrac{2^{x_1}}{2^{x_1}+\sqrt{2}}+\dfrac{2^{1-x_1}}{2^{1-x_1}+\sqrt{2}}\)

    \(=\dfrac{2^{x_1}}{2^{x_1}+\sqrt{2}}+\dfrac{2}{\sqrt{2} \cdot 2^{x_1}+2}=1\).

    \(\therefore y_p=\dfrac{1}{2}\left(y_1+y_2\right)=\dfrac{1}{2}\).

    (2)解:由(1)知\(x_1+x_2=1\),\(f (x_1)+f (x_2)=y_1+y_2=1\), \(f(1)=2-\sqrt{2}\),

    由 \(S_n=f\left(\dfrac{1}{n}\right)+f\left(\dfrac{2}{n}\right)+\cdots+f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{n}{n}\right)\),

    \(S_n=f\left(\dfrac{n}{n}\right)+f\left(\dfrac{n-1}{n}\right)+\cdots+f\left(\dfrac{2}{n}\right)+f\left(\dfrac{1}{n}\right)\),

    相加得

    \(2 S_n=f(1)+\left[f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n-1}{n}\right)\right]+\left[f\left(\dfrac{2}{n}\right)+f\left(\dfrac{n-2}{n}\right)\right]+\)\(\cdots+\left[f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{1}{n}\right)\right]+f(1)=2 f(1)+n-1=n+3-2 \sqrt{2}\),

    \(\therefore S_n=\dfrac{n+3-2 \sqrt{2}}{2}\).

【B组---提高题 】

1.求 \(\sin ^2 1^{\circ}+\sin ^2 2^{\circ}+\sin ^2 3^{\circ}+\cdots+\sin ^2 88^{\circ}+\sin ^2 89^{\circ}\)的值.

2.已知数列\(\{a_n\}\)满足:\((n+1) a_{n+1}-(n+2) a_n=(n+1)(n+2)(n∈N^*)\)且\(a_1=4\),数列\(\{b_n\}\)的前\(n\)项和\(S_n\)满足:\(S_n=2b_n-1(n∈N^*)\).

  (1)证明数列 \(\left\{\dfrac{a_n}{n+1}\right\}\)为等差数列,并求数列\(\{a_n\}\)和\(\{b_n\}\)的通项公式;

  (2)若 \(c_n=\left(\sqrt{a_n}-1\right) b_{n+1}\),数列\(\{c_n\}\)的前\(n\)项和为\(T_n\),对任意的\(n∈N^*\),\(T_n≤nS_{n+1}-m-2\)恒成立,求实数\(m\)的取值范围.

3.已知数列\(\{a_n\}\)满足\(a_n≠0\),\(a_1= \dfrac{1}{3}\),\(a_{n-1}-a_n=2a_n a_{n-1} (n≥2 ,n∈N^*)\).

  (1)求证:\(\left\{\dfrac{1}{a_n}\right\}\)是等差数列;\(\qquad \qquad\) (2)证明:\(a_1^2+a_2^2+⋯+a_n^2< \dfrac{1}{4}\).

参考答案

  1. 答案 \(44.5\)

    解析 设 \(S=\sin ^2 1^{\circ}+\sin ^2 2^{\circ}+\sin ^2 3^{\circ}+\cdots+\sin ^2 88^{\circ}+\sin ^2 89^{\circ}\)………… ①

    将①式右边反序得

    \(S=\sin ^2 89^{\circ}+\sin ^2 88^{\circ}+\cdots+\sin ^2 3^{\circ}+\sin ^2 2^{\circ}+\sin ^2 1^{\circ}\)…………②

    ①+②得

    \(2 S=\left(\sin ^2 1^{\circ}+\sin ^2 89^{\circ}\right)+\left(\sin ^2 2^{\circ}+\sin ^2 88^{\circ}\right)+\cdots+\left(\sin ^2 89^{\circ}+\sin ^2 1^{\circ}\right)\)

    \(=\left(\sin ^2 1^{\circ}+\cos ^2 1^{\circ}\right)+\left(\sin ^2 2^{\circ}+\cos ^2 2^{\circ}\right)+\cdots+\left(\sin ^2 89^{\circ}+\cos ^2 89^{\circ}\right)=89\)

    \(\therefore S=44.5\).

  2. 答案 (1) 证明路,\(a_n=(n+1)^2\),\(b_n=2^{n-1}\);(2) \(m≤-1\) .

    解析 (1)证明: \(\because(n+1) a_{n+1}-(n+2) a_n=(n+1)(n+2)\),

    \(\therefore \dfrac{a_{n+1}}{n+2}-\dfrac{a_n}{n+1}=1\).\(\therefore\)数列\(\left\{\dfrac{a_n}{n+1}\right\}\)为等差数列,

    又\(a_1=4\), \(\therefore \dfrac{a_ 1}{2}=2\),公差为\(1\).

    \(\therefore \dfrac{a_n}{n+1}=2+(n-1) \times 1=n+1\),则\(a_n=(n+1)^2\);

    \(\because S_n=2b_n-1\),①

    令\(n=1\),得\(b_1=1\),

    \(\therefore S_{n+1}=2b_{n+1}-1\),②

    由②-①得:\(S_{n+1}-S_n=2b_{n+1}-2b_n=b_{n+1}\).

    \(\therefore \dfrac{b_{n+1}}{b_n}=2\).

    \(\therefore \{b_n\}\)为等比数列,且\(b_1=1\),\(q=2\).

    \(\therefore b_n=2^{n-1}\);

    (2) \(c_n=\left(\sqrt{a_n}-1\right) b_{n+1}=n 2^n\).

    \(\therefore T_n=1 \times 2+2 \times 2^2+3 \times 2^3+\cdots+(n-1) \times 2^{n-1}+n \times 2^n\),①

    \(\therefore 2T_n=1×2^2+2×2^3+⋯+{n-1}×2^n+n×2^{n+1}\),②

    由①-②得:

    \(-T_n=2+2^2+2^3+\cdots+2^n-n \times 2^{n+1}=\dfrac{2\left(1-2^n\right)}{1-2}-n \times 2^{n+1}\).

    \(\therefore T_n=(n-1)×2^{n+1}+2\).

    而\(S_n=2b_n-1=2^n-1\), \(\therefore S_{n+1}=2^{n+1}-1\).

    \(\because T_n≤nS_{n+1}-m-2\)恒成立,

    \(\therefore m≤nS_{n+1}-2-T_n=2^{n+1}-n-4\).

    令\(f(n)=2^{n+1}-n-4\),

    \(\therefore f(n+1)-f(n)=2^{n+1}-1>0\).

    \(\therefore f(n)\)递增,则 \(f(n)_{\min }=f(1)=-1\).

    故\(m≤-1\).

  3. 证明 (1)\(\because a_{n-1}-a_n=2a_n a_{n-1} (n≥2 ,n∈N^*)\)

    \(\therefore \dfrac{1}{a_n}-\dfrac{1}{a_{n-1}}=2(n \geq 2)\),

    \(\therefore\left\{\dfrac{1}{a_n}\right\}\)是以\(3\)为首项,\(2\)为公差的等差数列.

    (2)由(1)知: \(\dfrac{1}{a_n}=3+(n-1) \cdot 2=2 n+1\),

    \(\therefore a_n=\dfrac{1}{2 n+1}\) ,

    \(\therefore a_n^2=\dfrac{1}{(2 n+1)^2}<\dfrac{1}{4 n^2+4 n}=\dfrac{1}{4 n(n+1)}=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\),

    \(\therefore a_1^2+a_2^2+\cdots+a_n^2<\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

    \(<\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{4}\left(1-\dfrac{1}{n+1}\right)<\dfrac{1}{4}\).

【C组---拓展题 】

1.设\(f(x)=(x-1)^3+1\),则\(f(-4)+⋯+f(0)+⋯+f(5)+f(6)\)的值为\(\underline{\quad \quad}\).

2.已知正项数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),对\(∀n∈N^*\)有\(2S_n=a_n^2+a_n\).令 \(b_n=\dfrac{1}{a_n \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_n}}\),设\(\{b_n\}\)的前\(n\)项和为\(T_n\),则在\(T_1\),\(T_2\),\(T_3\),\(…\),\(T_{100}\)中有理数的个数为\(\underline{\quad \quad}\).

3.已知数列\(\{a_n\}\)满足\(a_1=1\), \(\sqrt{a_n}-\sqrt{a_{n+1}}=\sqrt{a_n \cdot a_{n+1}}\left(n \in N^*\right)\).

  (1)求证:数列\(\left\{\sqrt{\dfrac{1}{a_n}}\right\}\)为等差数列,并求\(a_n\);

  (2)设 \(b_n=\sqrt{1+2 a_{n+1}}\),数列\(\{b_n\}\)的前\(n\)项和为\(S_n\),求证:\(S_n<n+1-\dfrac{1}{n+1}\).

参考答案

  1. 答案 \(11\)

    解析 用倒序相加法:

    令\(f(-4)+f(-3)+⋯+f(0)+⋯+f(5)+f(6)=S\) ①

    则也有\(f(6)+f(5)+⋯+f(0)+⋯+f(-3)+f(-4)=S\) ②

    由\(f(x)+f(2-x)=(x-1)^3+1+(x-1)^3+1=2\),

    可得:\(f(-4)+f(6)=f(-3)+f(5)=⋯=2\),

    于是由①②两式相加得\(2S=11×2\),

    所以\(S=11\) .

  2. 答案 \(9\)

    解析 \(\because 2S_n=a_n^2+a_n\),

    \(\therefore\)当\(n≥2\)时,\(2a_n=2(S_n-S_{n-1} )=(a_n^2+a_n )-(a_{n-1}^2+a_{n-1})\),

    整理得:\((a_n-a_{n-1})( a_n+a_{n-1})=a_n+a_{n-1}\),

    又\(\because\)数列\(\{a_n\}\)的每项均为正数,\(\therefore a_n-a_{n-1}=1\),

    又\(\because 2a_1=a_1^2+a_1\),即\(a_1=1\),

    \(\therefore\)数列\(\{a_n\}\)是首项、公差均为\(1\)的等差数列, \(\therefore a_n=n\),

    \(\therefore b_n=\dfrac{1}{a_n \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_n}}=\dfrac{1}{\sqrt{n(n+1)}} \cdot \dfrac{1}{\sqrt{n}+\sqrt{n+1}}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\),

    \(\therefore\) 数列\(\{b_n\}\)的前\(n\)项和为 \(T_n=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\cdots+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}=1-\dfrac{1}{\sqrt{n+1}}\),

    要使得\(T_n\)为有理数,只需\(\dfrac{1}{\sqrt{n+1}}\)为有理数即可,即\(n+1=t^2\),

    \(\because 1≤n≤100\),\(\therefore t=3、8、15、24、35、48、63、80、99\),

    即在\(T_1\),\(T_2\),\(T_3\),\(…\),\(T_{100}\)中有理数的个数为\(9\)个,

    故答案为:\(9\).

  3. 答案 (1) 证明略,\(a_n=\dfrac{1}{n ^2}\) ;(2) 略.

    解析 (1)解:由\(\sqrt{a_n}-\sqrt{a_{n+1}}=\sqrt{a_n \cdot a_{n+1}}\),得\(\dfrac{1}{\sqrt{a_{n+1}}}-\dfrac{1}{\sqrt{a_n}}=1\),

    所以数列\(\left\{\sqrt{\dfrac{1}{a_n}}\right\}\)是以\(1\)为首项\(1\)为公差的等差数列,

    即\(\dfrac{1}{\sqrt{a_n}}=1+(n-1)=n\),化简得 \(a_n=\dfrac{1}{n^2}\).

    (2)证明:因为 \(\dfrac{1}{n+1}-\dfrac{1}{n}<0\),

    所以\(\dfrac{2}{n+1}\left(\dfrac{1}{n+1}-\dfrac{1}{n}\right)<0<\dfrac{1}{n^2(n+1)^2}\),

    可得:\(\dfrac{2}{(n+1)^2}<\dfrac{2}{n(n+1)}+\dfrac{1}{n^2(n+1)^2}\),

    即\(1+\dfrac{2}{(n+1)^2}<1+\dfrac{2}{n(n+1)}+\dfrac{1}{n^2(n+1)^2}\),

    所以\(\sqrt{1+\dfrac{2}{(n+1)^2}}<1+\dfrac{1}{n(n+1)}\),

    因为\(b_n=\sqrt{1+2 a_{n+1}}=\sqrt{1+\dfrac{2}{(n+1)^2}}<1+\dfrac{1}{n(n+1)}\),

    所以\(S_n=b_1+b_2+\cdots+b_n\)\(<n+\dfrac{1}{1 \times 2}+\dfrac{1}{2 \times 3}+\cdots+\dfrac{1}{n(n+1)}=n+1-\dfrac{1}{n+1}\).

    所以\(S_n<n+1-\dfrac{1}{n+1}\).

数列专题2 求数列的前n项和的更多相关文章

  1. 39. 求分数序列前N项和

    求分数序列前N项和 #include <stdio.h> int main() { int i, n; double numerator, denominator, item, sum, ...

  2. 20. 求阶乘序列前N项和

    求阶乘序列前N项和 #include <stdio.h> double fact(int n); int main() { int i, n; double item, sum; whil ...

  3. 19. 求平方根序列前N项和

    求平方根序列前N项和 #include <stdio.h> #include <math.h> int main() { int i, n; double item, sum; ...

  4. 12. 求简单交错序列前N项和

    求简单交错序列前N项和 #include <stdio.h> int main() { int denominator, flag, i, n; double item, sum; whi ...

  5. 练习2-15 求简单交错序列前N项和 (15 分)

    练习2-15 求简单交错序列前N项和 (15 分) 本题要求编写程序,计算序列 1 - 1/4 + 1/7 - 1/10 + ... 的前N项之和. 输入格式: 输入在一行中给出一个正整数N. 输出格 ...

  6. HDU_2011——求多项式的前n项和

    Problem Description 多项式的描述如下:1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...现在请你求出该多项式的前n项的和.   Input 输入数据由2行组 ...

  7. 求Sn=a+aa+aaa+aaaa+aaaaa的前5项之和,其中a是一个数字

    思路:所求和为一个数字的前n项和,例如前4项和就是从4+44+444+4444,一直加到第4位,为4个4.所以可以用一个循环来表示每一项的数字,加到前几项就循环几次.然后将每项进行相加就可以求出总和. ...

  8. 黑马入学基础测试(三)求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55

    .获得用户的输入 计算      3打印就行了.   这里用到了java.util.Scanner   具体API  我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复 ...

  9. js 求前n项的 fibnaci 数列和

    function f(n) { var num1 = 1, num2 = 1; if (n == 1) document.write(num1);//n=1,输出1 else if (n > 1 ...

  10. 递归函数练习:输出菲波拉契(Fibonacci)数列的前N项数据

    /*====================================================================== 著名的菲波拉契(Fibonacci)数列,其第一项为0 ...

随机推荐

  1. .NET 8 通用权限框架 前后端分离,开箱即用

    前言​ 推荐一个基于.NET 8 实现的通用权限开发框架Admin.NET,前端使用Vue3/Element-plus开发. 基于.NET 8(Furion)/SqlSugar实现的通用管理平台.整合 ...

  2. 【Docker】11 私有仓库

    Docker的私有仓库也是一个镜像形式: docker pull registry 运行容器: run -d --name my-docker-repo -p 5000:5000 registry 访 ...

  3. NVIDIA的ROS项目 —— Isaac ROS

    文档地址: https://nvidia-isaac-ros.github.io/index.html Github地址: https://github.com/NVIDIA-ISAAC-ROS

  4. python性能分析器:line_profiler

    代码: import line_profiler import sys def test(): for i in range(0, 10): print( i**2 ) print("End ...

  5. NVIDIA的OpenUSD是什么? —— Universal Scene Description (USD)

    正如NVIDIA的老黄在2024年的技术大会上的展示一样,NVIDIA公司或许最准确的定义应该是计算机图形学公司,因为不论是NVIDIA搞GPU还是搞通用计算还是搞软件生态以至于现在搞AI搞机器人搞自 ...

  6. obs 直播软件 虚拟摄像头插件 —— obs-virtualcam

    如题: 外网下载地址: https://github.com/Fenrirthviti/obs-virtual-cam/releases 这个东西是做啥用的这里就不讲了,这个东西的资源不好找,找了好半 ...

  7. 【转载】 python鸭子类型与protocol

    版权声明:本文为CSDN博主「yuanzhoulvpi」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/yuan ...

  8. python中不同方法的按索引读取数组的性能比较——哪种按索引读取数组的性能更好

    写python代码这么多年,从来也没有想过不同方式的读取python数组会有什么太大的性能差距,不过这段时间写代码突然发现这个差别还挺大,于是就多研究了一下. 本文研究的是使用不同方式来对python ...

  9. git No url found for submodule path 'xxxxx' in .gitmodules

    删除之前的子模块记录 rm -rf git rm --cached 然后加进去 git submodule add

  10. condition字符串匹配问题

    概述 freeswitch是一款简单好用的VOIP开源软交换平台. fs使用dialplan配置文件执行业务流程,condition条件变量的配置是必然会使用的,这里记录一次配置过程中的错误示范. 环 ...